Dual Isolated RS232 μ Module Transceiver with Integrated DC/DC Converter

DESCRIPTIO

Demonstration circuit DC1554A is a dual isolated RS232 μ Module ${ }^{\circledR}$ transceiver with integrated power featuring the $\mathrm{LTM}^{\circledR} 2882$. The demo circuit provides 2-channel, $2500 V_{\text {RMS }}$, galvanically isolated RS232 transceiver interface. All components are integrated into the μ Module transceiver. The demo circuit operates from external supplies on $V_{C C}$ and V_{L}. The part generates the output
voltage $\mathrm{V}_{\text {CC2 }}$ and communicates all necessary signaling across the isolation barrier using LTC's Isolation μ Module Technology.

Design files for this circuit board are available at http://www.linear.com/demo.

[^0]Table 1. Performance Summary $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$V_{C C}$	Input Supply Range	LTM2882-5 LTM2882-3	$\begin{aligned} & 4.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 3.6 \end{aligned}$	V
VL	Logic Signal Supply Range		1.62		5.5	V
$\mathrm{V}_{\text {CC2 }}$	Output Voltage	LTM2882-5 L LOAD $=150 \mathrm{~mA}$ LTM2882-3 L LOAD $=100 \mathrm{~mA}$	$\begin{aligned} & 4.8 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 5.2 \end{aligned}$	V
$\mathrm{f}_{\text {MAX }}$	Maximum Data Rate	$\begin{aligned} & R_{L}=3 k, C_{L}=2.5 n F \\ & R_{L}=3 k, C_{L}=1 n F \\ & R_{L}=3 k, C_{L}=250 \mathrm{pF} \end{aligned}$	$\begin{gathered} \hline 100 \\ 250 \\ 1000 \end{gathered}$			kbps kbps kbps
VIORM	Maximum Working Insulation Voltage	GND to GND2	560			Vpk
	Common Mode Transient Immunity		30			kV/ $/ \mathrm{s}$

OPERATING PRINCIPLES

The LTM2882 contains an isolated DC/DC converter delivering power to $\mathrm{V}_{\mathrm{CC} 2}$ at 5 V from the input supply $V_{C C}$. Isolation is maintained by the separation of GND and GND2 where significant operating voltages and transients can exist without affecting the operation of the LTM2882. The logic side ON pin enables or shuts down the LTM2882. RS232 signaling is controlled by the logic inputs T1IN, T2IN, and DE. Connection to the transceiver pins, R1IN - T10UT or R2IN - T20UT, permits RS232 communication on the isolated side of the demo circuit. The circuit features two channels, supporting multiple RS232 channels or the addition of flow control on a single RS232 interface. Jumpers and inclusion of a standard RS232
configured DB9 connector allow the RS232 Transceiver interface to be looped back for easy performance verification using a PC. Additional logic signaling from the logic side to the isolated side is available with the DIN to DOUT pins. This channel may be used to control the state of the driver outputs from the logic side, T10UT and T20UT, by connecting DOUT to DE.

Data is transmitted out the driver pins T10UT and T20UT from the inputs T1IN and T2IN with the input DE set high. Data is received through the receiver pins R1IN and R2IN to the outputs R10UT and R20UT, receivers are always active.

DEMO MANUAL DC1554A

PUICK START PROCEDURE

Demonstration circuit DC1554 is easy to set up and evaluate the performance of the LTM2882. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below.
Note: Use a short ground lead on the oscilloscope probe when measuring input or output voltage ripple and high speed signals.

Note: Jumpers JP4, JP5, JP8, JP9 and JP10 may be installed in three possible positions depending upon the desired operating state. Positions may be vertical or horizontal. Please pay careful attention to the demo circuit labeling and reference the attached schematic for proper configuration.

1. Place jumpers in the following positions.

JP1 ON (default)
JP2 $V_{C C}$ (note: Iogic signals referenced to $V_{C C}$)
JP3 ON (default)
JP4 LOOP (center horizontal position)
JP5 LOOP (center horizontal position)
JP6 LOW (default)
JP7 ON (default)
JP8 ON (default)
JP9 Remove
JP10 Remove
2. With power off, connect the input power supply to $\mathrm{V}_{C C}$ and GND.
3. Turn on the power at the input.

Note: Make sure the input voltage does not exceed 6 V .
4. Check for the proper output voltages. $\mathrm{V}_{\mathrm{CC2}}=5 \mathrm{~V}$, LED D1 is ON and LED D2 is ON.
5. Once the proper output voltages are established, connect a standard 9-pin RS232 cable between J1 on the demo board and a computer.
6. Launch any program with the ability to send, receive, and monitor RS232 characters or data, including the ability to control the communication handshaking. Realterm is a free, powerful, terminal program which can easily be used for the above purposes. Signals may be verified with the use of an oscilloscope connected to any of the appropriate signal turrets on the demo card.

Note: Jumpers JP9 and JP10 must be inserted in the center horizontal position to allow signal monitoring of the receiver input channels on the associated demo board turrets.

PUICK START PROCEDURE

Figure 1. Demo Board Setup

DEMO MANUAL DC1554A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
REQUIRED CIRCUIT COMPONENTS				
1	2	CIN1, CIN2	CAP., TANT 6.84F 16V 10\% TAJA	AVX TAJA685K016R
2	2	D1, D2	LED, SMT, GREEN, 2.1V 15mA	PANASONIC LN1351C-(TR)
3	1	R1	RES., CHIP 1.5k 1/16W 5\% 0603	VISHAY, CRCW06031K50JNEA
4	3	R3, R6, R7	RES., CHIP 10k 1/4W 5\% 0603	VISHAY, CRCW060310KOJNEA
5	1	R2	RES., CHIP 3.3k 1/16W 5\% 0603	VISHAY, CRCW06033K30JNEA
6	2	R4, R5	RES., CHIP 1k 1/4W 5\% 0603	VISHAY, CRCW06031K00JNEA
HARDWARE-FOR DEMO BOARD ONLY				
1	1	J1	CON, DSUB 9 PIN	SINGATRON DR-E9SB-NJ000-S0007
2	5	JP1-JP3, JP6,JP7	2 mm SINGLE ROW HEADER, 3-PIN	SAMTEC, TMM-103-02-L-S
3	6	JP4, JP5, JP8-JP10	2 mm DOUBLE ROW HEADER, 3×2 PIN	SAMTEC, TMM-103-02-L-D
4	10	JP1-JP10	SHUNT	SAMTEC, 2SN-BK-G
5	5	TP1-TP5	TEST POINT, TURRET, 0.095	MILL-MAX, 2501-2-00-80-00-00-07-0
6	12	TP7-TP18	TEST POINT, TURRET, 0.065	MILL-MAX, 2308-2-00-80-00-00-07-0
7	4	(Stand-Off)	STAND-OFF, NYLON 0.375" tall	KEYSTONE, 8832 (SNAP ON)

SCHEMATIC DIAGRAM

DEMO MANUAL DC1554A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
DP130SSEVM ISO3086TEVM-436 ADP5585CP-EVALZ CHA2066-99F AS8650-DB MLX80104 TESTINTERFACE I2C-CPEV/NOPB ISO35TEVM-434 416100120-3 XR18910ILEVB XR21B1421IL28-0A-EVB EVAL-ADM2491EEBZ MAXREFDES23DB\# MAX9286COAXEVKIT\# MAX3100EVKIT MAX13235EEVKIT MAX14970EVKIT\# XR21B1424IV64-0A-EVB CMOD232+ MAX13042EEVKIT+ MAX14838EVKIT\# MAXCAM705OV635AAA\# MAX9205EVKIT DS100BR111AEVK/NOPB DC241C MAX9286RCARH3DB\# MAX13035EEVKIT+ DC1794A SN65HVS885EVM EVB81112-A1 DFR0257 ZLR964122L ZLR88822L DC196A-B DC196A-A DC327A OM13585UL MAX16972AGEEVKIT\# MARS1-DEMO3-ADAPTER-GEVB MAX7315EVKIT+ PIM511 PIM536 PIM517 DEV-17512 STR-FUSB3307MPX-PPS-GEVK MAXREFDES177\# EVAL-ADM2567EEBZ EVAL-ADN4654EBZ MAX9275COAXEVKIT\# MAX2202XEVKIT\#

[^0]: $\boldsymbol{\mathcal { T }}$, LT, LTC, LTM, μ Module, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

