DEMO MANUAL DC1555B

LTC4365: High Voltage UV, OV and Reverse Supply Protection Controller

DESCRIPTION

Demonstration circuitDC1555B is intended to demonstrate the performance ofthe LTC4365 High Voltage Undervoltage (UV), Overvoltage (OV) and Reverse Supply Protection Controller.

The LTC4365 protects circuits from input voltages that may be too high, too low or negative. It operates by controlling the gates of two back-to-back connected MOSFETs to keep the output in a safe range. The OV and UV protection levels are adjusted by resistive dividers at the OV and UV pins. Asserting the $\overline{\text { SHDN }}$ pin disables the MOSFETs and places the LTC4365 in a low-current shutdown state. The FAULT pin is asserted when the Controller is in shutdown mode
or when the input voltage is outside of the UV or OV level.
The LTC4365 can withstand DC voltages between -40V and 60 V and has a valid operating range of 2.5 V to 34 V .
The DC1555B includes the LTC4365 Controller, two back-to-back connected power MOSFETs, three jumpers and three LEDs to indicate the input and output voltages and the FAULT pin signal.

Design files for this circuit board are available at http://www.linear.com/demo

LT, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PGRFORMA

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
V IN	Board Input Voltage Range		-30		30	V
$\mathrm{V}_{\text {IN(UVLO) }}$	Input Supply Undervoltage Lockout	$V_{\text {IN }}$ Rising	1.8	2.2	2.4	V
IVIN	Input Supply Current	$\begin{aligned} & \overline{\mathrm{SHDN}}=0 \mathrm{~V} \\ & \overline{\mathrm{SHDN}}=2.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 10 \\ & 25 \end{aligned}$	$\begin{gathered} 50 \\ 150 \end{gathered}$	$\mu \mathrm{A}$ $\mu \mathrm{A}$
$\underline{\underline{l V I N(R)}}$	Reverse Input Supply Current	$\mathrm{V}_{\text {IN }}=-40 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$		-1.2	-1.8	mA
$\Delta V_{\text {GATE }}$	External N-Channel Gate Drive (GATE - V ${ }_{\text {OUT }}$)	$\begin{aligned} & V_{\text {IN }}=V_{\text {OUT }}=5 \mathrm{~V}, I_{\text {GATE }}=-1 \mu \mathrm{~A} \\ & V_{\text {IN }}=V_{\text {OUT }}=12 \mathrm{~V} \text { to } 34 \mathrm{~V}, \mathrm{I}_{\text {GATE }}=-1 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 3 \\ 7.4 \end{gathered}$	$\begin{aligned} & 3.6 \\ & 8.4 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 9.8 \end{aligned}$	V
$\underline{I_{\text {GATE (UP) }}}$	External N-Channel Gate Pull-Up current	GATE $=\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$	-12	-20	-30	$\mu \mathrm{A}$
$\underline{I_{\text {GATE (FAST) }}}$	External N-Channel Fast Gate Pull-Down Current	Fast Shutdown, GATE $=20 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$	31	50	72	mA
$\underline{I_{\text {GATE(SLOW }}}$	External N-Channel Gentle Gate Pull-Down Current	Gentle Shutdown, GATE $=20 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$	50	90	150	$\mu \mathrm{A}$
$\mathrm{V}_{\text {UV }}$	UV Input Threshold Voltage	UV Falling $\rightarrow \Delta \mathrm{V}_{\text {GATE }}=0 \mathrm{~V}$	492.5	500	507.5	mV
$\mathrm{V}_{\text {OV }}$	OV Input Threshold Voltage	OV Rising $\rightarrow \Delta V_{\text {GATE }}=0 \mathrm{~V}$	492.5	500	507.5	mV
$\mathrm{t}_{\text {GATE(FAST) }}$	External N-Channel Fast Gate Turn-Off Delay	$\mathrm{C}_{\text {GATE }}=2.2 \mathrm{nF}, \mathrm{UV}$ or OV Fault		2	4	$\mu \mathrm{s}$
$\mathrm{t}_{\text {FAULT }}$	OV, UV Fault Propagation Delay	Overdrive $=50 \mathrm{mV}, \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$		1	2	$\mu \mathrm{S}$
$\mathrm{V}_{\text {SHDN }}$	$\overline{\text { SHDN }}$ Input Threshold	$\overline{\text { SHDN }}$ Falling to $\Delta \mathrm{V}_{\mathrm{GATE}}=0 \mathrm{~V}$	0.4	0.75	1.2	V

DEMO MANUAL DC1555B

OPERATING PRINCIPLES

The LTC4365 monitors the input rail voltage and disconnects downstream circuits when the input voltage is too low, too high or negative. The LTC4365 provides accurate overvoltage and undervoltage comparators to ensure that power is applied to the system only if the input supply is within the allowable voltage window. Reverse supply
protection circuit automatically isolates the load from negative input voltages.

During normal operation, a high voltage charge pump enhances the gate of external N-channel power MOSFETs.

The LTC4365 consumes $10 \mu \mathrm{~A}$ during shutdown and $125 \mu \mathrm{~A}$ while operating.

PUICK START PROCEDURE

Demonstration circuit 1555B is easy to set up to evaluate the performance of the LTC4365. Refer to Figures 1a and 1b for proper measurement equipment setup and follow the procedure below.

Note that the circuit on the DC1555B is optimized for 12 V operation; The Si4230 FET limits overvoltage and reverse voltage to 30 V and -30V, respectively. Refer to the LTC4365 data sheet for applications optimized for other voltages.

Reverse Voltage Tests (Figure 1a)

1) Set JP1 to EN.
2) Set JP2 and JP3 to CONNECT LED.
3) Connect a power supply across $\mathrm{V}_{\text {IN }}$ and GND in negative configuration (connect positive rail to GND and negative rail to V_{IN}).
4) Connect voltmeters at the input and output and ammeter in series with supply.
5) Ramp supply down to -30 V (referenced to GND).
6) Verify output voltage is between OV and -0.5 V , all LEDs are off, and input current is $<1.8 \mathrm{~mA}$. (FET leakage or other board leakage paths can pull $\mathrm{V}_{\text {OUT }}$ slightly negative, but it will be clamped by the internal protection diode.)
7) Ramp supply back to OV .

Undervoltage/Overvoltage Test (Figure 1b)

8) Reverse the polarity of power supply connection across $\mathrm{V}_{\text {IN }}$ to GND (connect positive rail to $\mathrm{V}_{\text {IN }}$ and negative rail to GND).
9) Ramp supply up to 30 V and verify green $\mathrm{V}_{\text {IN }} \mathrm{LED}$, red FAULT LED, green $\mathrm{V}_{\text {OUT }}$ LED, and $\mathrm{V}_{\text {OUT }}$ according to Table 1 within the various voltage ranges.
10) Ramp supply down from 30 V down to OV and verify green $\mathrm{V}_{\text {IN }}$ LED, red $\overline{\text { FAULT }}$ LED, green $\mathrm{V}_{\text {OUT }}$ LED, and $V_{\text {OUT }}$ according to Table 1.
11) Repeat steps 9 and 10 with 8 Aload connected across $V_{\text {OUt }}$ and GND.

Table 1

$V_{\text {IN }}$	$V_{\text {OUT }}$	$V_{\text {IN }}$ LED	$\mathbf{V}_{\text {OUT }}$ LED	$\overline{\text { FAULT LED }}$
0 V to 5.77 V	$=0 \mathrm{~V}$	Off/Dim/On	Off	On
6.56 V to 13.51 V	$=\mathrm{V}_{\text {IN }}$	0 n	$0 n$	Off
15.47 V to 30 V	$=0 \mathrm{~V}$	On	0 ff	On

Jumper Test

12) Remove load and set supply to 9 V .
13) Move jumpers and verify LEDs according to Table 2.

Table 2

JP1	JP2/JP3	VIN LED	VOUT LED
EN	CONNECT LED	On	On
DIS	CONNECT LED	On	Off
EN	Open	Off	Off

PUICK START PROCEDURE

Figure 1a. Reverse Voltage Measurement

Figure 1b. Undervoltage/Overvoltage Measurement
3

DEMO MANUAL DC1555B

PARTS LIST

ITEM	QUANTITY	REFERENCE	DESCRIPTION	MANUFACTURERS PART NUMBER
Required Circuit Components				
1	3	CLD1, CLD2, CLD3	Current Limiting, Diode, SOD-80	Central Semi. Corporation, CCLM2000
2	0	C1 (OPT)	Capacitor, X5R, 4.7 μ F, 50V, 20\%, 1210	Taiyo Yuden, UMK325BJ475MM-T
3	0	C2 (OPT)	Capacitor, Alum, 47 F , 35V, 10\%, OSCON-CE-6.3	Sanyo, 35CE47AX
4	0	C3 (OPT)	Capacitor, X5R, 10山F, 25V, 10\%, 1210	Taiyo Yuden, TMK325BJ106KM
5	2	D1, D2	LED, GRN	Panasonic, LN1351CTR
6	1	D3	LED, RED	Panasonic, LN1251CTR
7	1	D4	Diode, 75V/200mW, SOD-523	Diodes Inc., 1N4148WT
8	0	D5 (0PT)	Zener Diode, 15V, SOD-523	Diodes Inc., BZT52C15T \#PbF
9	0	D6 (OPT)	Zener Diode, 20V, POWERDI-123	Diodes Inc., DFLT20A \#PbF
10	0	D7 (0PT)	Zener Diode, 40V, POWERDI-123	Diodes Inc., DFLT40A \#PbF
11	4	E1, E2, E6, E7	Turret, Testpoint 0.094"	Mill Max 2501-2-00-80-00-00-07-0
12	4	E3, E4, E5, E8	Turret, Testpoint 0.063"	Mill Max 2308-2-00-80-00-00-07-0
13	3	JP1, JP2, JP3	Headers, Sgl. Row, 3 Pins, 2mm Ctrs.	Samtec, TMM-103-02-L-S
14	1	Q1	Dual N-Channel, 30V, SO-8	Vishay, SI4230DY-T1-GE3
15	0	Q2 (OPT)	Dual N-Channel, Low Current, SOT-563	Diodes Inc., 2N7002V-7
16	1	R1 (Bal to \#1608A)	Resistor, Chip, 1M, 0.06W, 1\%, 0603	Vishay, CRCW06031M00FKEA
17	1	R2	Resistor, Chip, 54.9k, 0.06W, 1\%, 0603	Vishay, CRCW060354K9FKEA
18	1	R3	Resistor, Chip, 36.5k, 0.06W, 1\%, 0603	Vishay, CRCW060336K5FKEA
19	1	R4	Resistor, Chip, 510k, 0.06W, 5\%, 0603	Vishay, CRCW0603510KJNEA
20	1	U1	IC, Over/Under/RevV/Revl Protection, SC8	Linear Technology Corporation, LTC4365CTS8
21	3	XJP1, XJP2, XJP3	Shunt, 2mm Ctrs.	Samtec, 2SN-BK-G
22	4		Stand-Off, Nylon, 0.25" Tall	Keystone, 8831(Snap On)

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

DEMO MANUAL DC1555B

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

