DEMO MANUAL DC1573A

LT3760 8-Channel 100mA High Voltage LED Driver

DESCRIPTION

DC1573A is an 8-Channel 100mA High Voltage LED Driver featuring the LT ${ }^{\circledR} 3760$. The LT3760 drives up to 100 mA per string and has a maximum LED string voltage of 45 V . DC1573A is set at 1 MHz switching frequency for smallest inductor and capacitor size as well as maximum PWM dimming performance. Overvoltage protection is set at 55 V in case the LEDs are removed from the circuit. If the LEDs are opened, the FAULT terminal output flag goes low and reports the fault condition. The $\mathrm{V}_{\text {IN }}$ terminal is powered from 10 V to 14 V input separated from the 24 V PV IN supply for best thermal performance. If one or more of the 8 LED channels is not used, its LED pin or terminal should be tied to LED+ to disable it. Multiple channels can be used in parallel for higher LED current by tying their LED1-8 pins together.

The LT3760 data sheet gives a complete description of the part, operation and applications information. The data sheet must be read in conjunction with this demo manual for demonstration circuit 1573A. The LT3760 is assembled in a small 28 -lead FE (4.4mm TSSOP) package with a thermally enhanced ground pad. Proper board layout is essential for maximum thermal performance. See the Layout Considerations section in the data sheet.

Design files for this circuit board are available at http://www.linear.com/demo

$\boldsymbol{\mathcal { Y }}$, LT, LTC, LTM, μ Module, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITION	VALUE (TYPICAL)
PV $V_{\text {IN }}$ Power Input Voltage Range	Operating	20 V to 28 V
$V_{\text {IN }}$ Pin Input Voltage Range	Operating	8 V to 14 V
Switching Frequency	$\mathrm{R}_{\mathrm{T}}=39.2 \mathrm{k}$	1 MHz
LED String Current $\mathrm{I}_{\text {LED(1-8) }}$	$\mathrm{R} 14=5.76 \mathrm{k}$	100 mA
OVP Open LED Voltage	$\mathrm{R} 8=11 \mathrm{k}, \mathrm{R} 7=20 \mathrm{k}$	55 V
Efficiency	PV IN $=24 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=10 \mathrm{~V}, \mathrm{~V}_{\text {LED }}=45 \mathrm{~V}, \mathrm{I}_{\text {LED1-8 }}=100 \mathrm{~mA}$	
Undervoltage Lockout	$\mathrm{R} 1=499 \mathrm{k}, \mathrm{R} 4=40.2 \mathrm{k}$	92%
Low Voltage Turn-On (UVLO $\left.+\mathrm{V}_{\text {HYST }}\right)$	$\mathrm{R} 1=499 \mathrm{k}, \mathrm{R} 4=40.2 \mathrm{k}$	20.1 V
Peak Switch Current Limit	$\mathrm{R}_{S 1}=0.015 \Omega$	21.4 V

DEMO MANUAL DC1573A

PUICK START PROCEDURE

Demonstration circuit 1573A is easy to set up to evaluate the performance of the LT3760. Followthe procedure below:
Note: PWM must be pulled high to work. If PWM is not used, tie PWM high or connect to REF on the PCB using resistor R9.

1. Connect strings of LEDs with forward voltage less than 45 V , but greater than the PV IN voltage, to the LED + and LED1-8 terminals on the PCB as shown in Figure 1. Tie any unused LED1-8 pins directly to $\mathrm{V}_{\text {OUT }}$ (LED+) before power-up to disable that channel.
2. Connect the $\overline{\text { SHDN }}$ terminal to GND.
3. With power off, connect the $\mathrm{PV}_{\text {IN }}$ power supply to the PV IN and GND terminals within the range specified on the PCB. Make sure that the PV IN DC input voltage does not exceed the forward voltage of the LED string.
4. With power off, connect the V_{IN} power supply to the $V_{\text {IN }}$ and GND terminals within the range specified on the PCB.
5. Connect the PWM terminal. If PWM is not used, tie PWM high or connect to REF on the PCB using resistor R9. PWM must be pulled high to work.
6. Turn the $P V_{\text {IN }}$ power supply on.
7. Turn the V_{IN} power supply on after $\mathrm{PV}_{\mathrm{IN}}$.
8. Release the $\overline{\text { SHDN-to-GND connection. }}$
9. Observe the LED strings running at the programmed LED current.
Note: For PWM dimming, connecta PWM (100Hz or higher) signal to the PWM terminal and observe the reduction of brightness in the LED string when PWM dimming.

Figure 1. Proper Measurement Setup Drawing

TERMINAL OPTIONS

$\overline{\text { FAULT: The } \overline{\text { FAULT }} \text { terminal is tied directly to the FAULT }}$ pin. If there is a fault condition, the FAULT terminal is pulled low. When there is no fault, the terminal is pulled up to $\mathrm{V}_{\text {IN }}$. This terminal can be monitored with a voltage meter, tied to the input of another device, or left floating.
 UVLO pin. A resistor divider from $\mathrm{PV}_{\text {IN }}$ to GND sets the voltage on this terminal/pin. These resistors can be easily adjusted for both the UVLO level and the amount of rising hysteresis. See the data sheet for details. The terminal can also be used to shut the IC down and turn off the LEDs. Tie the terminal directly to GND in order to place the IC in shutdown and turn off the LEDs.

CTRL: This terminal is tied directly to the CTRL pin. As assembled, there is a 1 M resistor pulling the CTRL pin up to REF. The CTRL pin voltage can be adjusted for analog dimming as shown in the data sheet. Either a voltage on the CTRL terminal can be driven to dim the LEDs or a resistor divider (R2 and R5) from $\mathrm{PV}_{\text {IN }}$ to GND can be added to reduce the CTRL voltage as $\mathrm{PV}_{\text {IN }}$ drops too low. Pulling the CTRL pin to GND turns the LEDs off.

PWM: This terminal is tied directly to the PWM pin. As shown in the data sheet, an input PWM waveform turns the LEDs ON and OFF. Dimming frequency and dimming range are discussed in the data sheet. When PWM dimming is not being used, tie PWM to REF with a 0Ω resistor (R9) or place a 3.3 V or 5 V DC source on the PWM terminal.

SYNC: This terminal is tied directly to the SYNC pin. As assembled, SYNC is disabled and tied directly to GND with a 0Ω resistor (R6). For SYNC to be used, R6 must be removed and a SYNC signal must be applied to this terminal.

INTV $_{\text {CC: }}$: This terminal is tied directly to the INTV ${ }_{\text {CC }}$ pin. This terminal is provided to be able to monitor the voltage on the INTV ${ }_{\text {CC }}$ regulator or to provide an external INTV ${ }_{C C}$ source to the IC. In some low voltage applications, INTV ${ }_{C C}$ can be tied directly to $\mathrm{PV}_{\text {IN }}$ or $\mathrm{V}_{\text {IN }}$. See the data sheet for details. For normal operation, leave this terminal floating.

LED+ and LED1-8: The eight LED+ terminals are the output voltage of the boost regulator and they are all tied together on the PCB. The anodes of the LED strings should be tied to these terminals and the cathodes to LED1-8 terminals. If an LED1-8 terminal is not used, it should be tied directly to LED+. If all LED + to LED1-8 connections are left floating or are opened during operation, DC1573A powers the output to 55 V as programmed by OVPSET. It is okay to connect LEDs to the LED+ and LED1-8 terminals when it is powered to OVP. See data sheet for details.

LED1-8 terminals can be tied together to get more than 100 mA per LED string. Pairs of LED1-8 terminals can be tied together for $4 \times 200 \mathrm{~mA}$ LED strings as an example. Individually, each LED1-8 pin can source a maximum of 100 mA , but they can be tied together for more.

DEMO MANUAL DC1573A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	CIN1	Capacitor, 1210 4.7 ${ }^{\text {FF 20\% 25V X7R }}$	TDK C3225X7R1E475M
2	1	CIN2	Capacitor, 1210 4.7 ${ }^{\text {F }} 10 \%$ 50V X7R	AVX 12105C475KAT2A
3	5	C1, C2, C3, C4, C5	Capacitor, 1210 2.2 $\mu \mathrm{F} 10 \% 100 \mathrm{~V}$ X7R	Murata GRM32ER72A225KA35L
4	1	C6	Capacitor, $08054.7 \mu \mathrm{~F} 10 \%$ 10V X5R	Taiyo Yuden LMK212BJ475KG-T
5	1	C7	Capacitor, 0402 2200pF 5\% 50V X7R	AVX 04025C222JAT2A
6	1	D1	Diode, Schottky	Diodes Inc. PDS560
7	1	L1	Inductor, 10 ${ }^{\text {H }}$	Sumida CDRH8D38NP-100NC
8	1	M1	MOSFET N-channel 60V	Vishay Si7850DP-T1-E3
9	1	RS1	Resistor, $20100.015 \Omega 1 \% 1 \mathrm{~W}$	IRC LRF2010LF-01-R015-F
10	1	RT	Resistor, 0402 39.2k $1 \% 1 / 16 \mathrm{~W}$	Panasonic ERJ-2RKF3922X
11	1	R1	Resistor, 0603 499k Ω 1\% 1/10W	NIC NRC06F4993TRF
12	1	R4	Resistor, 0603 40.2k $1 \% 1 / 10 \mathrm{~W}$	NIC NRC06F4022TRF
13	2	R7, R10	Resistor, 0402 20k $1 \% 1 / 16 \mathrm{~W}$	NIC NRC04F2002TRF
14	1	R8	Resistor, $040211 \mathrm{k} \Omega 1 \% 1 / 16 \mathrm{~W}$	NIC NRC04F1102TRF
15	1	R11	Resistor, 0402 30.9k $31 \% 1 / 16 \mathrm{~W}$	NIC NRC04F3092TRF
16	1	R13	Resistor, 0402 10k $5 \% 1 / 16 \mathrm{~W}$	NIC NRC04J103TRF
17	1	R14	Resistor, $04025.76 \mathrm{k} \Omega 1 \% 1 / 16 \mathrm{~W}$	NIC NRC04F5761TRF
18	1	R18	Resistor, 0603 1M 5 5\% 1/10W	Vishay CRCW06031M00JNEA
19	1	U1	IC, 8-Channel LED Driver	Linear Technology LT3760EFE

Optional Electrical Components

1	0	C10	Do Not Stuff	Option
2	0	R2, R3, R5, R16	Resistor, 0603 Option	Option
3	1	R6	Resistor 0603 0 Ω Jumper	NIC NR06ZOTRF
4	0	R9, R12	Do Not Stuff	Option
5	1	R15	Resistor, 0603 100k 2 5\% 1/10W	NIC NRCO6J104TRF
6	1	R17	Resistor, 0402 0 Ω Jumper	Vishay CRCW04020000Z0ED
Hardware 1 14 E1-E6, E13, E40-E46 Turret MILL MAX 2501-2-00-80-00-00-07-0 2 16 E7, E9-E11, E14-E16, E18-E20, E22, E23, E27, E31, E35, E39 Turret MILL MAX 2308-2-00-80-00-00-07-0				

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

DEMO MANUAL DC1573A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MIC2870YFT EV ADP8860DBCP-EVALZ LM3404MREVAL ADM8843EB-EVALZ TDGL014 ISL97682IRTZEVALZ LM3508TLEV EA6358NH MAX16826EVKIT MAX16839EVKIT+ TPS92315EVM-516 MAX1698EVKIT MAX6956EVKIT+ OM13321,598 DC986A DC909A DC824A STEVAL-LLL006V1 IS31LT3948-GRLS4-EB 104PW03F PIM526 PIM527 MAX6946EVKIT+ MAX20070EVKIT\# MAX20090BEVKIT\# MAX20092EVSYS\# PIM498 AP8800EV1 ZXLD1370/1EV4 MAX6964EVKIT MAX25240EVKIT\# MAX25500TEVKITC\# MAX77961BEVKIT06\# 1216.1013 TPS61176EVM-566 TPS61197EVM TPS92001EVM-628 $\underline{1270} \underline{1271.2004}$ $\underline{1272.1030} \underline{1273.1010} \underline{1278.1010} \underline{1279.1002} \underline{1279.1001} \underline{1282.1000} \underline{1293.1900} \underline{1293.1800} \underline{1293.1700} \underline{1293.1500} \underline{1293.1100}$

