LTC3607EUD Dual 600mA 15V Monolithic Synchronous Step-Down Regulator

DESCRIPTION

Demonstration circuit DC1596 is a dual output regulator consisting of two constant-frequency step-down converters, based on the LTC ${ }^{\circledR} 3607$ monolithic dual channel synchronous buck regulator. The DC1596 has an input voltage range of 4.5 V to 15 V , with each regulator capable of delivering up to 600 mA of output current. The DC1596 can operate in either Burst Mode ${ }^{\circledR}$ operation or pulse-skipping mode. In shutdown, the DC1596 quiescent current is less than $1 \mu \mathrm{~A}$. The DC1596 is a very efficient circuit attaining up to 90%. The DC1596 uses the LTC3607's16-lead QFN
package, which has an exposed pad on the bottom side of the IC for better thermal performance. These features, plus a set operating frequency range of 2.25 MHz , make the DC1596 demo board an ideal circuit for industrial or distributed power applications.
Design files for this circuit board are available at http://www.linear.com/demo
$\boldsymbol{\mathcal { L T }}$, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY
 Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	VALUE
Minimum Input Voltage		4.5V
Maximum Input Voltage		15V
Run	$\begin{aligned} & \text { RUN Pin }=\text { GND } \\ & \text { RUN Pin }=V_{I N} \end{aligned}$	Shutdown Operating
Output Voltage V ${ }_{\text {OUT1 }}$ Regulation	$\mathrm{V}_{\text {IN1 }}=4.5 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{I}_{\text {OUT } 1}=0 \mathrm{~A}$ to 600 mA	$\begin{aligned} & 1.2 \mathrm{~V} \pm 4 \%(1.152 \mathrm{~V}-1.148 \mathrm{~V}) \\ & 1.5 \mathrm{~V} \pm 4 \%(1.44 \mathrm{~V}-1.56 \mathrm{~V}) \\ & 1.8 \mathrm{~V} \pm 4 \%(1.728 \mathrm{~V}-1.872 \mathrm{~V}) \end{aligned}$
Typical Output Ripple V ${ }_{\text {Out1 }}$	$\mathrm{V}_{\text {IN } 1}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT } 1}=600 \mathrm{~mA}(20 \mathrm{MHz} \mathrm{BW})$	$<20 \mathrm{mV} \mathrm{P}_{\text {P- }}$
Output Voltage V ${ }_{\text {OUT2 }}$ Regulation	$\mathrm{V}_{\text {IN2 } 2}=4.5 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=0 \mathrm{~A}$ to 600 mA	$\begin{aligned} & 2.5 \mathrm{~V} \pm 4 \%(2.425 \mathrm{~V}-2.6 \mathrm{~V}) \\ & 3.3 \mathrm{~V} \pm 4 \%(3.168 \mathrm{~V}-3.432 \mathrm{~V}) \\ & 5 \mathrm{~V} \pm 4 \%(4.8 \mathrm{~V}-5.2 \mathrm{~V}) \end{aligned}$
Typical Output Ripple V 0 UT2	$\mathrm{V}_{\text {IN2 }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=600 \mathrm{~mA}(20 \mathrm{MHz} \mathrm{BW})$	<20mVP-p
Mode Setting	Mode Pin Floating Mode Pin Grounded	Burst Mode Operation Pulse-Skipping
Burst Mode Operation Output Current Thresholds	Channel 1: PV ${ }_{\text {IN } 1}=12 \mathrm{~V}, \mathrm{~V}_{\text {out } 1}=1.8 \mathrm{~V}$ Channel 2: PVIN2 $=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT1 }}<480 \mathrm{~mA} \\ & I_{\text {OUT2 }}<360 \mathrm{~mA} \end{aligned}$
Pulse-Skipping Operation Output Current Thresholds	Channel 1: $\mathrm{PV}_{\operatorname{IN} 1}=12 \mathrm{~V}, \mathrm{~V}_{\text {out } 1}=1.8 \mathrm{~V}$ Channel 2: $\mathrm{PV}_{\text {IN2 }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT2 }}=3.3 \mathrm{~V}$	$\begin{aligned} & I_{\text {OUT } 1}<330 \mathrm{~mA} \\ & \mathrm{I}_{\text {OUT2 }}<240 \mathrm{~mA} \end{aligned}$
Switching Frequency		$2.25 \mathrm{MHz} \pm 20 \%$

DEMO MANUAL DC1596A

DUICK START PROCEDURE

The DC1596 is easy to set up to evaluate the performance of the LTC3607. For a proper measurement equipment configuration, set up the circuit according to the diagram in Figure 1.

Note: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the $\mathrm{V}_{\text {IN }}$ or $V_{\text {OUt }}$ and GND terminals. See the proper scope probe technique in Figure 2.
Please follow the procedure outlined below for proper operation.

1. Connect the input power supply to the PVIN1/PVIN2 and GND terminals ($\mathrm{V}_{\text {IN1 }}$ and $\mathrm{V}_{\text {IN2 }}$ are separate nodes but are connected). Connect the loads between the VOUT and GND terminals. Refer to Figure 1 for the proper measurement equipment setup.

Before proceeding to operation, insert jumper shunts XJP1 and XJP2 into the OFF positions of headers JP1 and JP2, shunt XJP3 into the pulse-skip position of MODE header JP3, and shunt XJP4 into the VOUT1 voltage options of choice of header JP4: 1.2V, 1.5V, or 1.8 V , and shunt XJP5 into the VOUT2 voltage options of choice of header JP5: 2.5V, 3.3V, or 5V.
2. Apply 5.5 V at PVINs 1 , 2. Measure both VOUTs; they should read OV. If desired, one can measure the shutdown supply current at this point. The supply current will be less than $1 \mu \mathrm{~A}$ in shutdown.
3. Turn on VOUT1 and VOUT2 by shifting shunts XJP1 and XJP2 from the OFF positions to the ON positions. Both output voltages should be within a tolerance of $\pm 2 \%$.
4. Vary the input voltages from 5.8 V (the minimum $\mathrm{V}_{\text {IN }}$ is dependent on $\mathrm{V}_{\text {OUT }}$) to 15 V , and the load currents from OA to 600 mA . Both output voltages should be within $\pm 4 \%$ tolerance.
5. Set the load current of both outputs to 600 mA and the input voltages to 12 V , and then measure each output ripple voltage (refer to Figure 2 for proper measurement technique); they should each measure less than 20 mVAC . Also, observe the voltage waveform at either switch node (Pin 5 for reg. 1 and Pin 8 for reg.2) of each regulator. The switching frequencies should be about $2.25 \mathrm{MHz} \pm 20 \%$ ($\mathrm{T}=555 \mathrm{~ns}$ and 370 ns). Both switch node waveforms should be rectangular in shape, and 180° out-of-phase with each other.
6. To operate the ckt.s in Burst Mode operation, change the shunt position of header JP3 to BURST MODE.
7. Regulators 1 (PVIN1) and 2 (PVIN2) are completely separated from each other; thus, they can be powered from different individual input supplies (if R11 is removed), as can the signal input supply, SVIN. However, SVIN must powered for either regulator to function (SVIN is connected to PVIN1 through a filter on the demo board.).
8. When finished, insert shunts XJP1 and XJP2 to the OFF position(s) and disconnect the power.

Warning: If the power for the demo board is carried in long leads, the input voltage at the part could "ring", which could affect the operation of the circuit or even exceed the maximum voltage rating of the IC. To eliminate the ringing, a small tantalum capacitor (for instance, AVX part \# TPSY226M035R0200) is inserted on the pads between the input power and return terminals on the bottom of the demo board. The (greater) ESR of the tantalum capacitor will dampen the (possible) ringing voltage caused by the long input leads. On a normal, typical PCB, with short traces, this capacitor is not needed.

DEMO MANUAL DC1596A

PUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Setup

Figure 2. Measuring Input or Output Ripple

DEMO MANUAL DC1596A

PUICK START PROCEDURE

Figure 3. Switch Operation

Figure 5. Load Step Response

$V_{\text {IN }}=12 \mathrm{~V}$
$V_{\text {OUT1 }}=1.2 \mathrm{~V}$
400mA LOAD STEP (200 mA TO 600 mA)
PULSE-SKIPPING MODE, $\mathrm{f}_{\mathrm{SW}}=2.25 \mathrm{MHz}$
Figure 4. Load Step Response

Figure 6. Load Step Response

PUICK START PROCEDURE

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$
$V_{\text {OUT2 }}=2.5 \mathrm{~V}$
400 mA LOAD STEP (200 mA TO 600 mA)
PULSE-SKIPPING MODE, $\mathrm{f}_{\mathrm{SW}}=2.25 \mathrm{MHz}$
Figure 7. Load Step Response

Figure 9. Load Step Response

$V_{I N}=12 \mathrm{~V}$
$V_{\text {OUT2 }}=3.3 \mathrm{~V}$
400mA LOAD STEP (200 mA TO 600 mA)
PULSE-SKIPPING MODE, $\mathrm{f}_{\mathrm{SW}}=2.25 \mathrm{MHz}$
Figure 8. Load Step Response

Figure 10. Efficiency

DEMO MANUAL DC1596A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components		CAP., NPO, 22pF, 25V, 5\%, 0402	AVX, 04025A220JAT2A	
1	2	CFFW1, CFFW2	CAP., X7R, $0.1 \mu F, 16 \mathrm{~V}, 10 \%, 0603$	AVX, 0603YC104KAT2A
2	2	CIN1BYP, CIN2BYP	CAP., X5R, $10 \mu \mathrm{~F}, 6.3 \mathrm{~V}, 10 \%, 0805$	AVX, 08056D106KAT2A
3	2	COUT1, COUT2	CAP., X5R, 10 $\mathrm{FF}, 16 \mathrm{~V}, 10 \%, 1206$	AVX, 1206YD106KAT2A
4	2	CIN1, CIN2	Inductor, $2.2 \mu \mathrm{H}$	VISHAY, IHLP1616BZER2R2M11
5	1	L1	Inductor, 4.7 $\mu \mathrm{H}$	VISHAY, IHLP1616BZER4R7M11
6	1	L2	RES., CHIP, 210k, $1 \%, 0402$	VISHAY, CRCW0402210KFKED
7	1	R1	RES., CHIP, 887k, $1 \%, 0402$	VISHAY, CRCW0402887KFKED
8	1	R2	RES., CHIP, 196k, $1 \%, 0402$	VISHAY, CRCW0402196KFKED
9	1	R6	RES., CHIP, 105k, $1 \%, 0402$	VISHAY, CRCW0402105KFKED
10	1	R7	IC., LTC3607EUD, 16-PIN QFN 3X3	LINEAR TECH., LTC3607EUD
11	1	U1		

Additional Demo Board Circuit Components

1	3	COUT3, COUT4, CF	CAP., X7R, $0.1 \mu \mathrm{~F}, 16 \mathrm{~V}, 10 \%, 0603$	AVX, 0603YC104KAT2A
2	2	CIN3, CIN4	CAP., TANT, $22 \mu F, 35 \mathrm{~V}, 20 \%$, CASE Y	AVX, TPSY226M035R0200
3	0	COUT5, COUT6 (OPT.)	CAP., X5R, $47 \mu F, 6.3 \mathrm{~V}, 10 \%, 1210$	AVX, 12106D476KAQ2A
4	0	CIN5, CIN6 (OPT.)	CAP., X5R, $47 \mu \mathrm{~F}, 20 \mathrm{~V}, 10 \%, 1812$	
5	1	RF	RES., CHIP, 100 $\Omega, 1 / 16 \mathrm{~W}, 5 \%, 0402$	VISHAY, CRCW0402100RJNED
6	1	R3	RES., CHIP, 210k, $1 \%, 0402$	VISHAY, CRCW0402210KFKED
7	1	R4	RES., CHIP, 280k, $1 \%, 0402$	VISHAY, CRCW0402280KFKED
8	1	R5	RES., CHIP, 140k, $1 \%, 0402$	VISHAY, CRCW0402140KFKED
9	1	R8	RES., CHIP, 121k, $1 \%, 0402$	VISHAY, CRCW0402105KFKED
10	0	R9, R10 (OPT.)	RES., 0402	
11	1	R11	RES., CHIP, 0 $2,1 \%, 0805$	VISHAY, CRCW08050000Z0ED
12	2	RSD1, RSD2	RES., CHIP, $5.1 M, 5 \%, 0402$	VISHAY, CRCW04025M10JNED
13	2	RPG1, RPG2	RES., CHIP, 100k, $1 \%, 0402$	VISHAY, CRCW0402100KFKED

Hardware

1	12	E1-E12	Testpoint, TURRET, 0.094"	MILL-MAX-2501-2-00-80-00-00-07-0
2	2	JP1,JP2	0.079 SINGLE ROW HEADER, 3-PIN	SAMTEC, TMM103-02-L-S
3	2	JP4,JP5	$0.079,2$ 2X4 HEADER	SAMTEC, TMM104-02-L-D
4	1	JP3	$0.079,2 X 3$ HEADER	SAMTEC, TMM103-02-L-D
5	5	JP1-JP5	SHUNT, FOR JP1-JP5	SAMTEC, 2SN-BK-G

SCHEMATIC DIAGRAM

DEMO MANUAL DC1596A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPÓSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

