

## LTC3112EDHD

# 15V, 2.5A Synchronous Buck-Boost DC/DC Converter

#### DESCRIPTION

Demonstration Circuit 1598A is a fixed frequency synchronous buck-boost converter with an extended input and output range. The unique 4-switch, single inductor architecture provides low noise and seamless operation from input voltages above, below, or equal to the output voltage.

The LTC3112 features selectable PWM or Burst Mode operation, and an easily synchronizable oscillator. An output current monitor allows the load current to be controlled or monitored.

The LTC3112 operates with a 2.7V to 15V input voltage range and a VOUT range from 2.5V to 14V. The

demonstration board has been designed to operate with VIN from 2.7V to 15V and an output current up to 2.5A. For VIN < 5V, IOUT capability is reduced. VOUT is set to 5.0V. Typical demo board efficiency is shown below.

Design files for this circuit board are available. Call the LTC factory.

T. LTC, LTM, LT, Burst Mode, are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

| Input Voltage Range: V <sub>CC</sub> | 2.7V to 15.0V       |
|--------------------------------------|---------------------|
| VOUT                                 | 5.0V                |
| IOUT                                 | 2.5A for VIN > 5.0V |

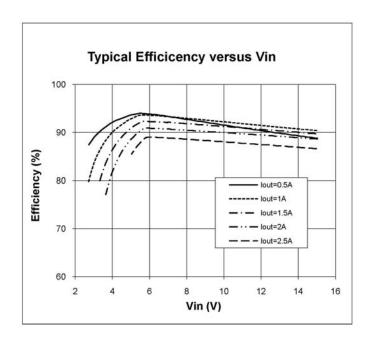



Figure 1. Typical Efficiency



### **QUICK START PROCEDURE**

Using short twisted pair leads for any power connections and with all loads and power supplies off, refer to Figure 1 for the proper measurement and equipment setup. The Battery/Power Supply (PS1) should not be connected to the circuit until told to do so in the procedure below.

When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe.

- 1. Jumper, PS1 and LOAD Settings to start: PS1= OFF
   JP1 (RUN) = OFF
   JP2 (PWM) = 750kHz (FIXED FREQUENCY)
   LOAD =  $1.0A / 5 \Omega$  10W resistor
- 2. With power OFF connect the power supply (PS1) as shown in Figure 1. If accurate current measurements are desired (for efficiency calculations for example) then connect an ammeter in series with the supply as shown. The ammeter is not required however.
- Connect the load to VOUT as shown in Figure 1. Again, connect an ammeter if accurate current measurement or monitoring is desired.
- Turn on PS1 and slowly increase voltage until the voltage at VIN is 3.6V. Move Jumper JP1 to ON.

- 5. Verify VOUT is ~5.0V.
- 6. VIN can now be varied between 2.7V and 15.0V. VOUT should remain in regulation.
- IOUT can also be varied from 0 to 2.5A. For VIN < 5.0V, maximum IOUT is reduced. This reduction is due to lin increasing as Vin decreases. Once the input current limit is reached, VOUT will fall out of regulation.

**NOTE**: If VOUT drops out of regulation, check to be sure the maximum load has not been exceeded, or that VIN is not below the minimum value (2.7V).

8. For operation in BURST Mode move Jumper JP2 to BURST. IOUT is limited in BURST MODE. See the datasheet for more information.

**NOTE**: IOUT can be monitored at the IOUT/IADJ terminal. The voltage at the terminal is:

V IOUT= IOUT\* 24\*10<sup>-6</sup> \* 42.2k

Where 42.2k Ohms is the value of R9. See the datasheet for more information, including typical curves.



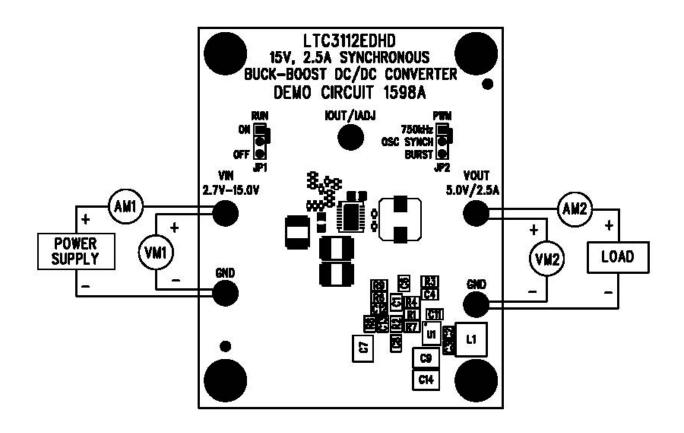



Figure 2. Measurement Setup



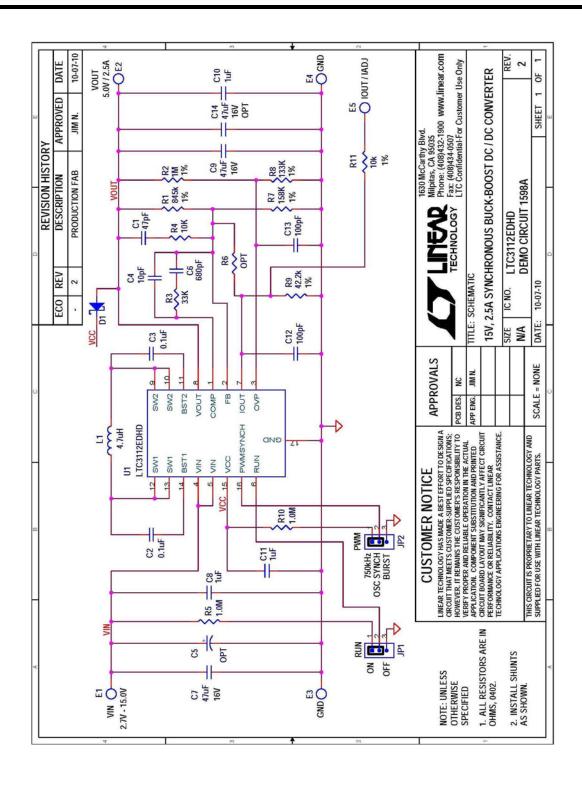



Figure 3. Circuit Schematic

| tem | Qty | Reference         | Part Description                       | Manufacturer / Part #             |
|-----|-----|-------------------|----------------------------------------|-----------------------------------|
|     |     |                   | IRCUIT COMPONENTS:                     |                                   |
| 1   | 1   | C1                | CAP CER 47PF 50V C0G 5% 0402           | TDK, C1005C0G1H470J               |
| 2   | 2   | C2,C3             | CAP CER 0.10UF 16V X7R ±20% 0402       | TDK, C1005X7R1C104M               |
| 3   | 1   | C4                | CAP CER 10PF 50V C0G ±0.5pF 0402       | TDK, C1005C0G1H100D               |
| 4   | 1   | C6                | CAP CER 680PF 50V C0G 0402             | MURATA, GRM1555C1H681JA01D        |
| 5   | 2   | C9,C7             | CAP CERAMIC 47UF 16V X5R ±10% 1210     | MURATA, GRM32ER61C476KE15L        |
| 6   | 3   | C8,C10,C11        | CAP CER 1.0UF 16V X7R 10% 0603         | TDK, C1608X7R1C105K               |
| 7   | 2   | C12,C13           | CAP CER 100pF 50V C0G 5% 0402          | TDK, C1005C0G1H101J               |
| 8   | 1   | D1                | DIODE SCHOTTKY 20V 500MA SOD123        | DIODES INC. B0520LW-7-F           |
| 9   | 1   | L1                | INDUCTOR, 4.7uH                        | WURTH, 744311470                  |
| 10  | 1   | R1                | RES 845K OHM 1/16W 1% 0402 SMD         | PANASONIC, ERJ-2RKF8453X          |
| 11  | 3   | R2,R5,R10         | RES 1.00M OHM 1/16W 1% 0402 SMD        | PANASONIC, ERJ-2RKF1004X          |
| 12  | 1   | R3                | RES 33.0K OHM 1/10W 1% 0402 SMD        | PANASONIC, ERJ-2RKF3302X          |
| 13  | 2   | R4,R11            | RES 10.0K OHM 1/16W 1% 0402 SMD        | PANASONIC, ERJ-2RKF1002X          |
| 14  | 1   | R7                | RES 158K OHM 1/16W 1% 0402 SMD         | PANASONIC, ERJ-2RKF1583X          |
| 15  | 1   | R8                | RES 133K OHM 1/10W 1% 0402 SMD         | PANASONIC, ERJ-2RKF1333X          |
| 16  | 1   | R9                | RES 42.2K OHM 1/10W 1% 0402 SMD        | PANASONIC, ERJ-2RKF4222X          |
|     |     |                   | 15V, 2.5A SYNCHRONOUS BUCK-BOOST DC /  |                                   |
| 17  | 1   | U1                | DC CONVERTER                           | LINEAR TECH;, LTC3112EDHD         |
|     |     | <b>ADDITIONAL</b> | DEMO BOARD CIRCUIT COMPONENTS:         |                                   |
| 1   | 0   | C5 (OPT)          | CAP, CAP TANT LOW ESR 47UF 35V 20% SMD | AVX, TPS476K035#0200              |
| 2   | 0   | C14 (OPT)         | CAP CERAMIC 47UF 16V X5R ±10% 1210     | MURATA, GRM32ER61C476KE15L        |
| 3   | 0   | R6 (OPT)          | RESISTOR, 0402                         |                                   |
|     |     | HARDWARE-         | FOR DEMO BOARD ONLY:                   |                                   |
| 1   | 5   | E1-E5             | TURRET, 0.09 DIA                       | MILL-MAX, 2501-2-00-80-00-00-07-0 |
| 2   | 2   | JP1.JP2           | JMP, 3PIN 1 ROW .079CC                 | SAMTEC, TMM-103-02-L-S            |
| 3   | 2   | XJP1,XJP2         | SHUNT, .079" CENTER                    | SAMTEC, 2SN-BK-G                  |
| 4   | 4   | STAND OFF         | STAND-OFF, NYLON 0.375" tall           | KEYSTONE, 8832 (SNAP ON)          |

Figure 4. Bill of Materials



## **X-ON Electronics**

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP1300.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM
BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM

NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ