LTC4226 Wide Operating Range Dual Hot Swap Controller

DESCRIPTIOn

Demonstration circuit 1627A is intended to display the Hot Swap ${ }^{\text {TM }}$ functionality of the LTC ${ }^{\circledR} 4226$ wide operating range dual Hot Swap controller. The DC1627A has two independent circuits, each for two rails. The circuit placed on the upper board area is for a high current load.

The first channel of the upper board circuit operates with a 10 A maximum in the +12 V rail while the second channel operates with a 5 A maximum in the +5 V rail. Provision is made for the installation of several MOSFET packages to test the LTC4226's performance during a short time with the larger current. Circuit LEDs indicate a presence of the input rail voltages and fault conditions in each rail. There are two jumpers: one for the current limit multiplicity selection and the other one for overvoltage protection configuration.

The circuit located on the lower board area is a special compact circuit for the Apple FireWire/IEEE 1394 power distribution.

Both channels of this circuit operate with 1.25A maximum current in the 12 V rails. It is not recommended to use this circuit for other operating conditions.
There are two versions of the controller: LTC4226-1 and LTC4226-2. The LTC4226-1 remains off after a fault while the LTC4226-2 automatically retries after a 0.5 second delay.
The DC1627A allows estimating the performance of the LTC4226 in different operation modes such as ramp-up, steady-state, and overcurrent fault conditions.

Design files for this circuit board are available at http://www.linear.com/demo
$\boldsymbol{\Delta T}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and Hot Swap is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PGRFORMANCE SUMMARY
 Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Upper Circuit +12V Channel						
$\mathrm{V}_{\text {CC1 }}$	Input Supply Range		9.79	12	16	V
$\mathrm{V}_{\text {CC1 (UV) }}$	Input Supply Undervoltage	$V_{\text {CC }}$ Rising; Based on the ON1 Pin Threshold	9.15	9.79	10.53	V
$\mathrm{V}_{\text {CC1 }}(\mathrm{OV})$	Input Supply Overvoltage	$V_{\text {CC }}$ Rising	15.4	16	17	V
S1	Output Voltage Slew Rate	No Current Limit	12000			V/s
$\mathrm{I}_{\text {CB1 }}$	Circuit Breaker Current Limit		8.91	10	11.11	A
${ }_{\text {t }}^{\text {CB1 }}$	Timer Period During Circuit Breaker Operation		19	29	48	ms
l ${ }_{\text {LIM1 }}$	Current Limit by Current Limit (CL) Amplifier	$\begin{aligned} & \text { CLS }=0 \mathrm{~V}(1.5 \times) \\ & \text { CLS }=0 \text { pen }(2 \times) \\ & \text { CLS }=3 \mathrm{~V}(3 \times) \end{aligned}$	$\begin{aligned} & 13.86 \\ & 18.42 \\ & 38.2 \end{aligned}$	$\begin{gathered} 17.2 \\ 23 \\ 34.6 \end{gathered}$	$\begin{gathered} 20.80 \\ 27.47 \\ 41.4 \end{gathered}$	A A A
trmmR1	Fault Timer Period During CL operation	$\begin{aligned} & \text { CLS }=0 \mathrm{~V}(1.5 \times) \\ & \text { CLS }=0 \text { pen }(2 x) \\ & \text { CLS }=3 \mathrm{~V}(3 x) \end{aligned}$	$\begin{gathered} \hline 2 \\ 1.12 \\ 0.5 \\ \hline \end{gathered}$	$\begin{aligned} & 2.9 \\ & 1.6 \\ & 0.7 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 4.6 \\ 2.6 \\ 1.15 \\ \hline \end{gathered}$	ms ms ms
Upper Circuit +5V Channel						
$\mathrm{V}_{\text {CC2 }}$	Input Supply Range		4.11	5	7.3	V
$\mathrm{V}_{\text {CC2 (UV) }}$	Input Supply Undervoltage	$V_{\text {CC }}$ Rising; Based on the ON2 Pin Threshold	3.86	4.11	4.37	V
$\mathrm{V}_{\text {CC2 }}(\mathrm{OV})$	Input Supply Overvoltage	$V_{\text {CC }}$ Rising	6.8	7.3	7.7	V
S2	Output Voltage Slew Rate	No Current Limit	12000			V/s
						dc1627af

DEMO MANUAL DC1627A

PERFORMARCE SUMmARY
 Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
$\mathrm{I}_{\text {CB2 }}$	Circuit Breaker Current Limit		4.45	5	5.55	A
${ }^{\text {t }}$ CB2	Timer Period During Circuit Breaker Operation		39	50	80	ms
ILIM2	Current Limit by CL Amplifier	$\begin{aligned} & \text { CLS }=0 \mathrm{~V}(1.5 \times) \\ & \text { CLS }=0 \text { pen }(2 x) \\ & \text { CLS }=3 V(3 \times) \end{aligned}$	$\begin{gathered} 6.9 \\ 9.2 \\ 13.8 \end{gathered}$	$\begin{gathered} \hline 8.6 \\ 11.5 \\ 17.3 \end{gathered}$	$\begin{aligned} & 10.4 \\ & 13.7 \\ & 20.7 \end{aligned}$	A A A
$t_{\text {FTMR2 }}$	Fault Timer Period	$\begin{aligned} & \text { CLS }=0 \mathrm{~V}(1.5 x) \\ & C L S=0 \text { pen }(2 x) \\ & C L S=3 V(3 x) \end{aligned}$	$\begin{aligned} & 3.3 \\ & 1.9 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 2.8 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 8.4 \\ & 4.7 \\ & 2.1 \end{aligned}$	ms ms ms
Compact Circuit for FireWire Power Distribution						
$V_{\text {CC }}$	Input Supply Range	Based on the ON Pin Threshold	4.62		16.7	V
$\mathrm{V}_{\text {CC(UV) }}$	Input Supply Undervoltage	$V_{\text {CC }}$ Rising	4.62	4.96	5.28	V
${ }^{\text {CB }}$	Circuit Breaker Current Limit		1.35	1.51	1.68	A
${ }_{\text {t }}^{\text {CB }}$	Timer Period During Circuit Breaker Operation		6.07	9.2	15.3	ms
ILIM	Current Limit by CL Amplifier	$\begin{aligned} & \text { CLS }=0 \mathrm{OV}(1.5 \times) \\ & \text { CLS }=0 \text { pen }(2 \times) \\ & \text { CLS }=3 V(3 \times) \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.8 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 3.5 \\ & 5.3 \end{aligned}$	3.2 4.2 6.3	A A A
$t_{\text {FTMR }}$	Fault Timer Period	$\begin{aligned} & \text { CLS }=0 \mathrm{~V}(1.5 \times) \\ & \text { CLS }=0 \text { pen }(2 \times) \\ & \text { CLS }=3 V(3 \times) \end{aligned}$	$\begin{gathered} \hline 0.6 \\ 0.35 \\ 0.15 \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 0.5 \\ 0.25 \end{gathered}$	$\begin{gathered} \hline 1.6 \\ 0.9 \\ 0.39 \end{gathered}$	ms ms ms

OPGRATING PRIICIPLES

The LTC4226 controls two rails with external N-channel MOSFETs. Two independent ONncomparators allow ramping rails up and down independently.

During normal operation, the charge pump delivers $9 \mu \mathrm{~A}$ to the gate driver to turn on the external N-channel MOSFET.
Each channel's circuit breaker (CB) comparator and current limit (CL) amplifier monitor the load current using the sense resistor voltage between the $\mathrm{V}_{\mathrm{CCn}}$ and the SENSE n pins. When the sense resistor voltage exceeds circuit breaker threshold $\left(\mathrm{V}_{\mathrm{CB}}\right)$, (but lower than $\mathrm{V}_{\mathrm{LIMIT}}$) the CB comparator enables a 2μ A current source, and the voltage at the fault timer (FTMRn) capacitor ramps up. When the FTMRn comparator voltage reaches 1.23 V threshold, the corresponding MOSFET is turned off.
When the sense resistor voltage exceeds $\mathrm{V}_{\text {LIMIT }}$, the CL amplifier limits the current in the load by reducing the gate-to-out voltage in an active control loop. The fast response CL amplifier can quickly adjust the gate-to-out voltage in the event of an output-to-ground short circuit. The FTMR n capacitor voltage ramps up with a $20 \mu \mathrm{~A}$ (or $36 \mu \mathrm{~A}$, or $80 \mu \mathrm{~A}$) current source instead of the $2 \mu \mathrm{~A}$ in the
active current limiting. By this means, the timer period during an active current limit is ten times less than it is in the circuit breaker operation.

The LTC4226-1 latches off after the MOSFET is turned off under an overcurrent condition. The ON pin status must be recycled low to high for the gate drive to restart. The demo board with LTC4226-1 is labeled as DC1627A-A.

The LTC4226-2 automatically retries after an overcurrent condition. It begins with a 0.5 second delay before resetting the fault timer with a $100 \mu \mathrm{~A}$ pull-down, followed by gate restart if ON pin is high. The demo board with LTC4226-2 is labeled as DC1627A-B.

Both channels share a common current limit select functionality with the current limit select (CLS) pin signal. This signal can have three input states: low, open and high. The three input states correspond to the preset current limit values. $\mathrm{V}_{\text {LIMIT }}$ becomes $1.5 \times$, or $2.0 \times$, or $3.0 \times$ of $1.15 \times \mathrm{V}_{\text {CB }}$. Undervoltage protection in the upper circuit is based on the ON n pin threshold. The resistors of each ON n pin divider are selected to have a threshold voltage at the LTC4226 ON

OPERATING PRINCIPLES

pin, when the input voltage equals the defined minimum. The Performance Summary table shows their values with consideration for the voltage tolerance of the comparator threshold and for 1% resistor tolerance.

Overvoltage protection in the upper circuit is built with Zener and Schottky diodes to trigger an artificial overcurrent mode by charging the FTMR capacitor. Due to the peculiar current leakage of some devices and their sensitivity to higher temperature a small initial voltage (0.1 V to 0.2 V)
on the FTMR capacitor can be found. It lowers the time in current limit mode. Overvoltage protection levels shown in the Performance Summary table were obtained by simulation.

Inherent in the LTC4226 is an undervoltage protection feature that allows the channels to operate only if $V_{C C}$ is above 3.7 V . When $\mathrm{V}_{\text {CC }}$ rises above the undervoltage lockout level, there is a delay of 50 ms before the gate starts to ramp.

PUICK START PROCEDURE

The test procedure for each channel of the LTC4226 is identical and includes verification of the main circuit parameters:

- S1-S2 output voltage slew rate;
- $I_{C B 1}{ }^{-} I_{C B 2}$ circuit breaker level performed by the circuit breaker and fault timer period (FTMR), when an overcurrent mode is initiated after power up has been completed;
- $I_{C L 1}{ }^{-I_{C L 2}}$ the current limit level performed by the current limit amplifier and fault timer period (FTMR) with an initially shorted output and CLS pin grounded.

If there is a need to test a channel with rail voltages other than those used for the DC1627A design (+5 V , and +12 V), make changes to the appropriate ON pin signal divider (R5, R10, R12 for channel 1 or R23, R29, and R31 for channel 2).

If any LTC4226 channel should operate at other than a factory assigned current, change the value of the sense resistor (R2, R22) and select the desired position for the current limit selection (CLS) jumper. Verify the power MOSFET current capability in the steady-state and in the power-up modes. Replace Q1 or Q3 with a suitably packaged MOSFET.

Demonstration circuit DC1627A is easy to set up to evaluate the performance of the each LTC4226 Hot Swap channel. Refer to Figure 1 for the proper measurement equipment setup for one channel and follow the procedure listed next.

UPPER CIRCUIT TEST

Jacks and Joined Turrets

- J1 (VCC1): 12V supply input; do not exceed 35V
- J2 (GND): Ground connection for 12V input supply
- J3 (OUT1): Output for 12V rail
- J4 (GND): Ground connection for 12V output
- J5 (VCC2): 5V supply input; do not exceed 35V
- J6 (GND): Ground connection for 5V input supply
- J7 (OUT2): Output for 5V rail
- J8 (GND): Ground connection for 5V output

Turrets Connected to Controller Pins

- E3 (ON1)
- E4 (FTMR1)
- E5 (CLS)
- E6 (FAULT1)
- E7 (FAULT2)
- E8 (FTMR2)
- E11 (ON2)
- E26 (DCLA)

Jumpers

JP1 (CLS): Current limit selection: Use 1.5X position to have 1.725X circuit breaker current limit (CBCL); use 2 X position to have 2.3X CBCL; use 3X position to have 3.45X CBCL.

DEMO MANUAL DC1627A

QUICK START PROCEDURE

JP2 (OVBLK): Overvoltage blocking selection: Use SEP position for individual channel blocking under overvoltage condition; use BOTH position for both channel blocking under any channel's overvoltage condition.

LEDs

- D3 (green): +12V supply is present
- D15 (green): +5 V supply is present
- D7 (red): +12V channel fault
- D9 (red): +5V channel fault

+12V Hot Swap

As the test procedures for all LTC4226 channels are identical, the following detailed description of the steps for +12 V channel test can be used for the other DC1627's channels with the only difference being the mentioned component designators.

1. The jumpers' shunts should be placed in the following position:
JP1 (CLS) $1.5 \times$
JP2 (OVBLK) SEP
Connect ON1 and GND turrets with an external wire to disable the +12V Hot Swap circuit.
2. Connect the +12 V supply terminals to the +12 V and GND demo board jacks appropriately and place scope probes on the OUT1 and FTMR1 turrets and a current probe to measure the +12 V wire current.

Turn on the +12 V supply. +12 V green LED (D3) will light indicating the presence of input voltage. Disconnect the ON1 and GND turrets to provide an ON1 pin signal, and verify that the output voltage rises in less than 1 ms .
3. Keep the scope probes and current probe in the same place. Initiate +12 V channel operation with no load, gradually increasing the load current with an electronic or resistive load and verify that the circuit breaker is in the range of 8.9 A to 11.11 A and the timer period is between 19 ms and 48 ms . Disable the +12 V channel by connecting the ON1 and GND turrets.
4. With the +12 V channel disabled, short the output to GND with an external wire. Monitor the current in the shorting wire with a current probe. Place the scope probes on the $\mathrm{V}_{\mathrm{CC} 1}$ and FTMR1 turrets. Enable the channel with an ON1 pin signal and verify that current is limited in the range 13.86A to 20.8A and current limit mode takes from 2 ms to 4.6 ms .

The upper circuit provides options for current limit selection (CLS JP1) and overvoltage protection (JP OVBLK).
Three positions of the current limit selection (CLS) jumper (JP1) correspond with the three pair of current limit parameters: current level and timer period. Estimated values for these parameters are shown in the Performance Summary table.

Special attention should be given to verification of the MOSFET's SOA regarding these parameters.
5. Each channel's overvoltage protection circuit can block its own channel if the OVBLK jumper header is installed in the position SEP, or both channels if the OVBLK is in the position BOTH. The +12 V rail overvoltage protection is in the 15.4 V to 17 V range, and +5 V rail is in the 6.8 V to 7.7 V range.
To test the overvoltage protection level place a scope probe at the FTMR turret and start to gradually increase the input voltage. The protection level is estimated when FTMR voltage reaches threshold and drops low. It means that an auxiliary overcurrent mode has been generated.

+5V Hot Swap

6. The jumpers' shunts should be placed in the following position:
JP1 (CLS) $1.5 \times$
JP2 (OVBLK) SEP
Connect ON2 and GND turrets with an external wire to disable the +5 V Hot Swap circuit.

PUICK START PROCEDURE

7. Connect the +5 V supply terminals to the +5 V and GND demo board jacks appropriately and place scope probes on the OUT2 and FTMR2 turrets and current probe to measure the +5 V wire current.
Turn on the +5 V supply. +5 V green LED (D15) will light up indicating the presence of input voltage. Disconnect the ON2 and GND turrets to provide an ON2 pin signal, and verify that the output voltage rises in less than 1 ms .
8. Keeping the scope probes and current probe in the same place, initiate +5 V channel operation with no load, gradually increasing the load current with an electronic or resistive load and verify that the circuit breaker is in the range of 4.45 A to 5.55 A and timer period is from 39 ms to 80 ms . Disable the +5 V channel by connecting the ON2 and GND turrets.
9. With the +5 V channel disabled, short the output to GND with an external wire. Monitor the current in the shorting wire with a current probe. Place the scope probes on the $\mathrm{V}_{\mathrm{CC2}}$ and FTMR2 turrets. Enable the channel with an ON2 pin signal and verify that current is limited in the range of 6.9 A to 10.4 A and current limit mode takes from 3.3 ms to 8.4 ms .
10. Confirm that each position of the current limit jumper corresponds to the appropriate current limit level and timer period. Special attention should be given to verification of the MOSFET's SOA regarding these parameters.

COMPACT CIRCUIT TEST

Turrets

- E1 and E16: Circuit GND
- E13: 1st channel + 12 V supply input; do not exceed 35 V
- E14 (OUT1): 1st channel output
- E15: 2nd channel + 12 V supply input; do not exceed 35V
- E17 (ON1)
- E18 (FTMR1)
- E19 (CLS)
- E20 (FAULT1)
- E21 (FAULT2)
- E22 (FTMR2)
- E23 (ON2)
- E24 (OUT2)

Connect ON1 and GND turrets with an external wire to disable the +12 V hot swap circuit. Connect CLS and GND turrets to select the lowest CL level.

1. Connect the +12 V supply terminals to the +12 V and GND demo board turrets. Place scope probes on the OUT1 and FTMR1 turrets and a current probe to measure +12 V wire current.
2. Turn on the +12 V supply. Disconnect ON1 and GND turrets to provide an ON1 pin signal, and verify that the output voltage rises in less than 1 ms .
3. Keeping the scope probes and current probe in the same place, initiate the +12 V channel operation with no load, gradually increasing the load current with an electronic or resistive load and verify that the circuit breaker is in the range of 1.35 A to 1.68 A and timer period 6.1 ms to 15.3 ms . Disable the +12 V channel by connection of the ON1 and GND turrets.
4. With the +12 V channel disabled, short the output to GND with an external wire. Monitor the current in the shorting wire with a current probe. Place the scope probes on the $\mathrm{V}_{\mathrm{CC1}}$ and FMR1 turrets. Enable the channel with an ON1 pin signal and verify that current is limited in the range of 2.1 A to 3.2 A and current limit mode takes 0.6 ms to 1.6 ms .

DEMO MANUAL DC1627A

PUICK START PROCEDURE

Figure 1. DC1627A Measurement Equipment Setup

DEMO MANUAL DC1627A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
1	4	COUT1, C1, COUT2, C8	CAP., X7R, 10 ${ }^{\text {F }} 50 \mathrm{~V}, 10 \%$, 1210	MURATA, GRM32ER71H106KA12L
2	2	CT1, CT2	CAP., X7R, 15nF, 50V 10\%, 0603	AVX, 06035C153KAT2A
3	2	C2, C9	CAP., X7R, 0.1 ¢F 10\% 10V, 0603	AVX, 0603ZC104KAT
4	2	C3, C12	CAP., X7R, 0.047 F 10\% 10V, 0603	AVX, 0603ZC473KAT2A
5	0	C4, C5, C10, C11	CAP., 0603	OPT
6	1	C6	CAP., X7R, 47nF, 50V 5\%, 0603	AVX, 06035C473JAT2A
7	1	C7	CAP., X7R, 82nF, 50V 10\%, 0603	AVX, 06035C823KAT2A
8	1	D2	DIODE ZENER, 1.8V 500mW, 5\%, S0D123	CENTRAL SEMI., CMHZ4701
9	2	D3, D15	LED, GREEN	PANASONIC, LN1351C-(TR)
10	4	D4, D6, D8, D10	DIODE, FAST SWITCHING, SOD523	DIODES INC., 1N4448HWT
11	2	D5, D12	DIODE ZENER, 1.8V 500mW, 5\%, S0D123	CENTRAL SEMI., CMHZ4683
12	2	D7, D9	LED, RED, 0603	VISHAY, TLMS1001-GS08
13	1	D13	DIODE ZENER, 1.8V 500mW, 5\%, S0D123	CENTRAL SEMI., CMHZ4690
14	15	E3-E8, E11, E17-E23, E26	TP, TURRET, 0.064"	MILL-MAX, 2308-2-00-80-00-00-07-0
15	14	E1, E13-E16, E24, E25, E27-E33	TP, TURRET, 0.094"	MILL-MAX, 2501-2-00-80-00-00-07-0
16	1	JP1	JMP, 4-PIN, 2mm	SAMTEC, TMM-104-02-L-S
17	1	JP2	JMP, 3-PIN, 2mm	SAMTEC, TMM-103-02-L-S
18	8	J1, J2, J3, J4, J5, J6, J7, J8	JACK, BANANA	KEYSTONE, 575-4
19	2	Q1, Q3	MOSFET, N-CH, POWER56	FAICHILD SEMI., FDMS86500DC
20	0	Q2, Q4	MOSFET, N-CH, S08-POWERPAK	OPT
21	2	Q5, Q6	MOSFET, N-CH, 40V(D-S), SOT23	VISHAY, Si2318CDS
22	0	R1, R21	RES, 1k, 0805	OPT
23	1	R2	RES, $0.005 \Omega, 1 \% 1 / 4 \mathrm{~W}, 1206$	VISHAY, WSL12065L000FEA
24	2	R3, R19	RES, 30.1k, 5\% 1/10W, 0603	VISHAY, CRCW060330K1JKEA
25	0	R4, R14, R23, R28	RES, 0603	OPT
26	1	R5	RES, 46.4k, 1\% 1/10W, 0603	VISHAY, CRCW060346K4FKEA
27	1	R6	RES, 5.6k, 5\% 1/10W, 0603	VISHAY, CRCW06035K60JKEA
28	4	R7, R17, R25, R38	RES, $10 \Omega, 5 \% 1 / 10 \mathrm{~W}, 0603$	VISHAY, CRCW060310ROJNEA
29	1	R8	RES, 3.3k, 5\% 1/10W, 0603	VISHAY, CRCW06033K30JKEA
30	0	R9, R11, R27, R30	RES, $10 \Omega, 0603$	OPT
31	2	R10, R29	RES, 23.2k, 1\% 1/10W, 0603	VISHAY, CRCW060323K2FKEA
32	2	R12, R31	RES, 10k, 5\% 1/10W, 0603	VISHAY, CRCW060310KOJNEA
33	2	R13, R18	RES, 2.4M, 5\% 1/10W, 0603	PANASONIC, ERJ-3GEYJ245V
34	3	R15, R16, R24	RES., CHIP, $0 \Omega, 0603$	VISHAY, CRCW06030000Z0EA
35	1	R20	RES, 1.8k, 5\% 1/10W, 0603	VISHAY, CRCW06031K80JKEA
36	1	R22	RES, $0.01 \Omega, 1 \% 1 / 4 \mathrm{~W}, 1206$	VISHAY, WSL1206R0100FEA
37	1	R26	RES, 1k, 5\% 1/10W, 0603	VISHAY, CRCW06031K00JNEA
38	2	R32, R37	RES, $0.033 \Omega, 1 \% 1 / 4 \mathrm{~W}, 1206$	VISHAY, WSL1206R0330FEA
39	2	R33, R35	RES,150k, 5\% 1/10W, 0603	VISHAY, CRCW0603150KJKEA
40	2	R34, R36	RES, 49.9k, 5\% 1/10W, 0603	VISHAY, CRCW060349K9JKEA
41	2	Z1, Z2	DIODE, SMC-DIODE	DIODES INC., SMCJ33CA-13-F
42	2	Z3, Z4	DIODE, TRANSIENT VOLTAGE SUPPRESSOR, POWEREDi123	DIODES INC., DFLT15A
43	2	SHUNTS ON JP1\&JP2	SHUNT, 2mm	SAMTEC, 2SN-BK-G
44	2	U1, U2	IC LTC4226CUD-1, DC1627A-A	LINEAR TECHNOLOGY CORP
45	2	U1, U2	IC LTC4226CUD-2, DC1627A-B	LINEAR TECHNOLOGY CORP

sCHEmATIC DIAGRAM

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights.

DEMO MANUAL DC1627A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPÓSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

