LTM8061-4.1/LTM8061-4.2/ LTM8061-8.2/LTM8061.4 32V, 2A μ Module Li-lon Battery Charger

DESCRIPTIOn

Demonstration circuits 1645A-A, 1645A-B, 1645A-C and 1645A-D feature the LTM8061, a 32V, $2 \mathrm{~A} \mu$ Module ${ }^{\circledR}$ Li-Ion battery charger. Operating from a6.5V to 32 V input source, the 1645A-A and 1645A-B demo circuits charge single cell Li-Ion batteries to float voltages of 4.1V or 4.2 V respectively. The 1645A-C and 1645A-D demo circuits operate from a 12 V to 32 V input source, and charge dual cell Li-Ion battery packs to float voltages of 8.2 V or 8.4 V . JP1 turns the
converter on or off. JP2 allows for easy selection of C/10 or timer charge termination. The LTM8061 datasheet must be read in conjunction with this demo manual for working on or modifying the demo circuit 1645A.
Design files for this circuit board are available at http://www.linear.com/demo

[^0]
PGRFORMANCE SUMMARY

Table 1. Typical Secifications of the Demoboard ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Input Supply Range	6.5 V to $32 \mathrm{~V}(-\mathrm{A}$ and -B$), 12 \mathrm{~V}$ to $32 \mathrm{~V}(-\mathrm{C}$ and -D$)$
Typical Output Current Limit for All Versions	2 A
Float Voltage Accuracy	4.08 V to $4.12 \mathrm{~V}(-\mathrm{A}), 4.18 \mathrm{~V}$ to 4.22V (-B) 8.16V to $-8.24 \mathrm{~V}(-\mathrm{C}), 8.36 \mathrm{~V}$ to $8.44 \mathrm{~V}(-\mathrm{D})$

BOARD PHOTO

DEMO MANUAL
 DC1645A-A/DC1645A-B/
 DC1645A-C/DC1645A-D

PUICK START PROCEDURE

Demonstration circuits 1645A-A, 1645A-B, 1645A-C and 1645A-D are easy to setupto evaluate the performance of the LTM8061-4.1, LTM8061-4.2, LTM8061-8.2, LTM8061-8.4.

Refer to Figure 1 for proper measurement and equipment setup.

DC1645A-A and DC1645A-B

Follow the procedure below for demo circuits 1645A-A and 1645A-B

1. Jumper and Power Supply Setting:

$$
\begin{array}{ll}
\mathrm{JP} 1=0 \mathrm{~N} & \mathrm{PS} 1=0 \mathrm{FF} \\
\mathrm{JP2}=\mathrm{C} / 10 & \mathrm{PS} 2=0 \mathrm{FF}
\end{array}
$$

2. Turn on PS2 and slowly increase the voltage to 2.7 V while monitoring the current into the BAT pin. If the current is less than 5mA, turn on PS1 and increase voltage to 12 V .
3. Verify that the battery charging current, I_{BAT}, is between 250 mA and 350 mA . The CHRG LED should be on and the FAULT LED should be off.
4. Increase PS2 until $\mathrm{V}_{\mathrm{BAT}}$ is 3.6 V . Verify the input current, I_{IN}, is between 700 mA and 850 mA , the battery current, I_{BAT}, is between 1.775 A and 2.225 A and that the CHRG LED remains on.
5. Increase PS2 until $V_{B A T}$ is 4.3V. Verify the battery charging current, $\mathrm{I}_{\mathrm{BAT}}$, is less than 5 mA and the CHRG LED is off.
6. Decrease PS2 until $\mathrm{V}_{\mathrm{BAT}}$ is 3.9 V . Verify the battery current, $I_{\text {BAT }}$, is between 1.775A and 2.225A and the CHRG LED is on.
7. Decrease PS2 until $\mathrm{V}_{\mathrm{BAT}}$ is 3.6V. Connecta10k resistor from RNG/SS to ground. Verify the charging current, $I_{B A T}$, is between 850 mA and 1.0 A . Verify the voltage at $\mathrm{V}_{\mathrm{RNG} / \mathrm{SS}}$, is between 450 mV and 550 mV . Remove the 10 k resistor.
8. Set JP1 to OFF. Verify the charging current, $I_{B A T}$, is less than 5 mA and the FAULT LED and the CHRG LED are off.
9. Set JP1 to ON. Connect a jumper from the NTC pin to ground. Verify the charging current, $\mathrm{I}_{\mathrm{BAT}}$, is less than 5mA and the FAULT LED and the CHRG LED are on.
10. Remove the jumper from NTC to ground. Verify the charging current, $\mathrm{l}_{\mathrm{BAT}}$, is between 1.775 A and 2.225 A , the FAULT LED is off and the CHRG LED is on.
11. This concludes the test for the A and B versions. Turn off PS1 and PS2.

DC1645A-C and DC1645A-D

Follow the procedure below for demo circuits $-C$ and $-D$
1a. Jumper and Power Supply Setting:

$$
\begin{array}{ll}
\mathrm{JP} 1=0 \mathrm{~N} & \mathrm{PS} 1=0 \mathrm{FF} \\
\mathrm{JP2}=\mathrm{C} / 10 & \mathrm{PS} 2=0 \mathrm{FF}
\end{array}
$$

2a. Turn on PS2 and slowly increase the voltage to 5.4 V while monitoring the current into the BAT pin. If the current is less than 5mA, turn on PS1 and increase voltage to 12 V .

3a. Verify that the battery charging current, I_{BAT}, is between 250 mA and 350 mA . The CHRG LED should be on and the FAULT LED should be off.

4a. Increase PS2 until $\mathrm{V}_{\text {BAT }}$ is 7.2 V . Verify the input current, I_{IN}, is between 1200 mA and 1700 mA , the battery current, $\mathrm{I}_{\mathrm{BAT}}$, is between 1.775 A and 2.225 A and the CHRG LED remains on.

5a. Increase PS2 until $\mathrm{V}_{\text {BAT }}$ is 8.6 V . Verify the battery charging current, I_{BAT}, is less than 5 mA and the CHRG LED is off.

6a. Decrease PS2 until $V_{B A T}$ is 7.8 V . Verify the battery current, $I_{\text {BAT }}$, is between 1.775A and 2.225 A and that the CHRG LED is on.

7a. Decrease PS2 until $\mathrm{V}_{\text {BAT }}$ is 7.2 V . Connect a 10 k resistor from RNG/SS to ground. Verify the charging current, $I_{B A T}$, is between 800 mA and 1.0 A . Verify the voltage at $\mathrm{V}_{\mathrm{RNG} / \mathrm{Ss}}$, is between 450 mV and 550 mV . Remove the 10 k resistor.

DEMO MANUAL DC1645A-A/DC1645A-B/ DC1645A-C/DC1645A-D

PUICK START PROCEDURE

8a. Set JP1 to OFF. Verify the charging current, I $\mathrm{I}_{\mathrm{BAT}}$, is less than 5mA and the FAULT LED and the CHRG LED are off.

9a. Set JP1 to ON. Connect a jumper from the NTC pin to ground. Verify the charging current, $\mathrm{I}_{\mathrm{BAT}}$, is less than 5 mA and the FAULT LED and the CHRG LED are on.

10a. Remove the jumper from NTC to ground. Verify the charging current, I_{BAT}, is between 1.775 A and 2.225 A , the FAULT LED is off and the CHRG LED is on.

11a. This concludes the test for the C and D versions. Turn off PS1 and PS2.

Figure 1. DC1645A Proper Equipment Setup

1645A F02
Figure 2. Efficiency vs $\mathrm{I}_{\text {bat }}$, 4.1 $\mathrm{V}_{\text {Bat }}$

Figure 3. Input Current vs $\mathrm{I}_{\text {BAT }}, 4.1 \mathrm{~V}_{\text {BAT }}$

PUICK START PROCEDURE

Figure 4. Efficiency vs $\mathrm{I}_{\mathrm{BAT}}, 8.2 \mathrm{~V}_{\text {BAT }}$

Figure 5. Input Current vs $\mathrm{I}_{\mathrm{BAT}}, 8.2 \mathrm{~V}_{\text {BAT }}$

PARTS LIST

ITEM	QUANTITY	REFERENCEDESCRIPTION	DESCRIPTION	MANUFACTURERS PART NUMBER
Required Circuit Components				
1	1	C4	CAP, 10^F 10\% 35V X5R, 1210	MURATA, GRM32ER7YA106KA12L
2	1	C5	CAP, $0.68 \mu \mathrm{~F} 10 \% 10 \mathrm{~V}$ X $5 \mathrm{R}, 0402$	MURATA, GRM155R61A684KE15D
3	1	C6	CAP, 47 $\mu \mathrm{F} 20 \% 16 \mathrm{~V}$ X $5 \mathrm{R}, 1210$	TAIYO YUDEN, EMK325BJ476MM-G
4	1	R2	RES, $0.02 \Omega 1 \% 1 / 2 \mathrm{~W}, 1206$	IRC, LR1206LF-01-R020-F
5	1	R3	RES, 0.1Ω 1\% 1/2W, 1206	IRC, LRC1206-01-R100-F
6	1	U1	IC, 32V, $2 \mathrm{~A} \mu$ Module Li Ion Battery Chrager	LTM8061EV-4.1 (-A only) LTM8061EV-4.2 (-B only) LTM8061EV-8.2 (-C only) LTM8061EV-8.4 (-D only)
7	1		FAB, PRINTED CIRCUIT BOARD	DEMO CIRCUIT 1645A

Additional Demo Board Circuit Components

1	0	C1,C2	CAP, 4.7 ${ }^{\text {F }} 10 \% 50 \mathrm{~V}$ X7R, 1210 OPT.	MURATA, GRM32ER71H475KA091B OPT
2	1	C3	CAP, 22 $\mu \mathrm{F} 20 \% 50 \mathrm{~V}$	SUNCON, 50CE22BS
3	1	D1	LED, GREEN	PANASONIC, LN1351C
4	1	D2	LED, RED	PANASONIC, LN1251C
5	3	R1,R5,R6	RES, 0Ω JUMPER, 1206	NIC, NRC12ZOTRF
6	0	R4	RES, OPT. 1206	OPTION
7	1	R7	RES, 100k 1\% 1/10W, 0603	NIC, NRC06F1003TRF
8	0	R8	RES, OPT. 0805	OPTION
9	2	R9,R10	RES, 5.1k 1\% 1/4W, 1206	NIC, NRC12F5101TRF
Hardware For Demo Board Only				
1	10	E1-E10	TURRET	MILL MAX, 2501-2-00-80-00-00-07-0
2	2	JP1, JP2	HEADER, 3-PIN, 2 mm	SAMTEC, TMM-103-02-L-S
3	2	JP1, JP2	SHUNT, 2mm	SAMTEC, 2SN-BK-G
4	4		STANDOFF, SNAP ON	KEYSTONE, 8834

SCHEMATIC DIAGRAM

DEMO MANUAL
 DC 1645A-A/DC 1645A-B/
 DC1645A-C/DC1645A-D

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPÓSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

> Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

[^0]: $\boldsymbol{\mathcal { G }}$, LT, LTC, LTM, μ Module, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

