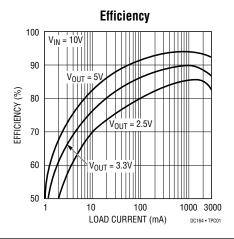
DEMO MANUAL DC164 DESIGN READY SWITCHER

NOLOGY LTC1624 Constant Frequency, 8-Pin N-Channel DC/DC Converter

DESCRIPTION


Demonstration Circuit 164 is a constant-frequency stepdown (buck) regulator implemented entirely in surface mount, using the LTC[®]1624 switching regulator controller. DC164 is usable in a wide range of portable, industrial, computer and communications applications. The output voltage is programmable to 2.5V, 3.3V or 5V via a jumper. The input voltage can range from 4.8V to 28V (limited by the external MOSFET). The circuit highlights the capabilities of the LTC1624, which uses a current mode, constant-frequency architecture to switch an N-channel power MOSFET while providing 95% maximum duty cycle. Operating efficiencies exceeding 90% are obtained. This results in a power supply that has very high efficiency, low ripple and fast transient response. At low output currents the LTC1624 automatically switches to Burst ModeTM operation to reduce switching losses and maintain high operating efficiencies. Additionally, the supply current can be shut down to less than $20\mu A$ (V_{IN} = 10V). This feature is an absolute necessity to maximize battery life in portable applications. **Gerber files for this circuit board are available. Call the LTC factory.**

ITC and LT are registered trademarks of Linear Technology Corporation. Burst Mode is a trademark of Linear Technology Corporation.

PERFORMANCE SUMMARY Operating Temperature Range 0°C to 50°C.

Input Voltage Range	(Maximum Input Voltage Limited by External MOSFET and Input Capacitor)	4.8V to 28V
Output	Output Voltage (Jumper Selectable)	2.5V, 3.3V, 5V
	Max Output Current (Continuous)	3.0A
	Max Output Current (Peak)	3.5A
	Typical Output Ripple at 10MHz Bandwidth (Burst Mode Operation) $I_0 = 100$ mA	50 mV _{P-P}
	Typical Output Ripple at 10MHz Bandwidth (Continuous) I ₀ = 1A	35mV _{P-P}
V _{IN}	Line Regulation 4.5V to 20V	0.002%/V
I _{OUT}	Load Regulation No Load to Full Rated Output	-1%
lq	Supply Current with No Load (Typical), V _{IN} = 10V	550µA
	Supply Current in Shutdown (Typical), V _{IN} = 10V	16µA
V _{ITH/RUN}	Run Pin Threshold (Typical)	0.8V
Frequency	Operating Frequency (Typical)	200kHz

TYPICAL PERFORMANCE CHARACTERISTICS AND BOARD PHOTO

PACKAGE AND SCHEMATIC DIAGRAMS

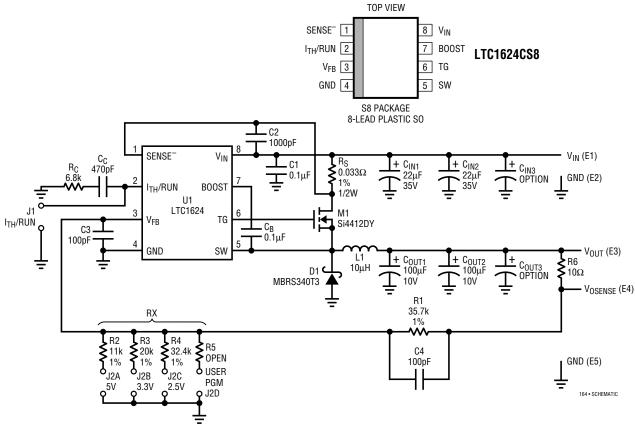


Figure 1. Demo Board Schematic

PARTS LIST

REFERENCE DESIGNATOR	QUANTITY	PART NUMBER	DESCRIPTION	VENDOR	TELEPHONE
Cc	1	08055A471MAT1A 08055A681MAT1A (5A)	470pF 50V 10% Chip Capacitor NPO 680pF 50V 10% Chip Capacitor NPO	AVX AVX	(803) 448-9411 (803) 448-9411
C _{IN1} , C _{IN2} , (C _{IN3})	2 (3, 5A)	TPSE226M035R0300	22µF 35V 20% Tantalum Capacitor	AVX	(803) 448-9411
C _{OUT1} , C _{OUT2} , (C _{OUT3})	2 (3, 5A)	TPSD107M010R0065	100µF 10V 20% Tantalum Capacitor	AVX	(803) 448-9411
C3, C4	2	08055A101KAT1A	100pF 50V 10% Chip Capacitor NPO	AVX	(803) 448-9411
C8, C1	2	08055C104MAT2A	0.1µF 50V 20% Chip Capacitor X7R	AVX	(803) 448-9411
C2	1	08055A102MAT2A	1000pF 50V 20% Chip Capacitor NPO	AVX	(803) 448-9411
D1	1	MBRS340T3 MBRD835L (5A)	BVR = 40V Schottky Diode BVR = 35V Schottky Diode	Motorola Motorola	(602) 244-3576 (602) 244-3576
E1, E2, E3, E4, E5	5	2502-2	Turret Terminal	Keystone	(718) 956-8900
JP1, JP2A, JP2B, JP2C, JP2D	5	2802S-03-G2	2mm Pin Header	COMM CON	(818) 301-4200
J1, J2A, J2B, J2C, J2D	2	CCIJ2MM-138-G	Jumper	COMM CON	(818) 301-4200
L1	1	CDRH125-10 CDRH127-10 (5A)	10µH Inductor 10µH Inductor (Alternate)	Sumida Sumida	(847) 956-0666 (847) 956-0666

PARTS LIST

REFERENCE Designator	QUANTITY	PART NUMBER	DESCRIPTION	VENDOR	TELEPHONE
M1	1	Si4412DY Si4410DY (5A)	N-Channel MOSFET N-Channel MOSFET	Siliconix Siliconix	(800) 554-5565 (800) 554-5565
R1	1	TAD CR10-3572F-T	35.7k 1/10W 1% Resistor Chip	TAD	(714) 255-9123
R2	1	TAD CR10-1102F-T	11k 1/10W 1% Resistor Chip	TAD	(714) 255-9123
R3	1	TAD CR10-2002F-T	20k 1/10W 1% Resistor Chip	TAD	(714) 255-9123
R4	1	TAD CR10-3242F-T	32.4k 1/10W 1% Resistor Chip	TAD	(714) 255-9123
R5	1	User Defined	User Defined 1/10W 1% Resistor Chip	TAD	(714) 255-9123
R6	1	TAD CR10-100J-T	10Ω 1/10W 1% Resistor Chip	TAD	(714) 255-9123
R _C	1	TAD CR10-682J-T TAD CR10-332J-T (5A)	6.8k 1/10W 5% Resistor Chip 3.3k 1/10W 5% Resistor Chip	TAD TAD	(714) 255-9123 (714) 255-9123
R _S	1	WSL-2010 WSL-2010 (5A)	0.033Ω 1/2W 1% Resistor 0.02Ω 1/2W 1% Resistor	Dale Dale	(605) 665-9301 (605) 665-9301
U1	1	LTC1624CS	LTC1624CS8 IC	LTC	(408) 432-1900

QUICK START GUIDE

This demonstration board is easily set up to evaluate the performance of the LTC1624. Please follow the procedure outlined below for proper operation.

- Refer to Figure 3 for board orientation and proper measurement equipment setup.
- Connect the input power supply to the V_{IN} and GND terminals on the left side of the board. Do not increase V_{IN} over 28V or the MOSFET, M1, will be damaged.
- Connect the load between the V_{OUT} and GND terminals on the right side of the board.
- The I_{TH}/RUN pin can be left unconnected. To shut down the LTC1624, connect a jumper from this pin to ground at J1. (A spare jumper installed in position D in J2 is supplied for this purpose).
- **Do not** short or load the V_{OSENSE} pin. The V_{OSENSE} pin is used for remote output voltage sensing only.

• Set the desired output voltage with jumper J2 as shown in Figure 2/Table 1.

Table 1. Output Voltage Selection

POSITION	OUTPUT VOLTAGE	
A	5V	
В	3.3V	
C	2.5V	
D	User Defined	

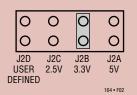


Figure 2. Output Voltage Selection (J2) (3.3V Position Shown)

The circuit in Figure 1 highlights the capabilities of the LTC1624 configured as a step-down switching regulator. The application circuit is set up for a variety of output voltages. Output voltages from 2.5V to 5V are available by selecting the appropriate jumper position. An additional jumper position is also available for a user-selectable output voltage by adding the appropriate feedback divider resistor at R5.

The LTC1624 is a current mode switching regulator controller that drives an external N-channel power MOSFET using a fixed-frequency architecture. Burst Mode operation provides high efficiency at low load currents. Operating efficiencies typically exceed 90% over two decades of load current range. A maximum duty cycle limit of 95% provides low dropout operation that extends operating time in battery-operated systems.

Small spring-clip leads are very convenient for smallsignal bench testing and voltage measurements but should not be used with the high currents associated with this circuit. Soldered wire connections are required to properly ascertain the performance of the PC board.

This demonstration unit is intended for the evaluation of the LTC1624 switching regulator IC and was not designed for any other purpose. Further detailed information and alternate topology applications are shown in the LTC1624 data sheet.

LTC1624 CONTROLLER DESCRIPTION

Main Control Loop

The LTC1624 uses a constant-frequency, current mode architecture. During normal operation, the top MOSFET is turned on during each cycle when the oscillator sets a latch, and turned off when the main current comparator resets the latch. The peak inductor current that resets the latch is controlled by the voltage on the I_{TH}/RUN pin, which is the output of the error amplifier. V_{FB} allows the error amplifier to receive an output feedback voltage from an external resistive divider. When the load current increases, it causes a slight decrease in V_{FB} relative to the 1.19V reference, which in turn causes the I_{TH}/RUN voltage to increase until the average inductor current matches the new load current. While the top MOSFET is off, an internal bottom MOSFET is turned on for approximately 300ns to 400ns to recharge the bootstrap capacitor C_B.

The top MOSFET driver is biased from the floating bootstrap capacitor C_B , which is recharged during each off cycle. The dropout detector counts the number of oscillator cycles that the top MOSFET remains on and periodically forces a brief off period to allow C_B to recharge.

The main control loop is shut down by pulling I_{TH}/RUN below its 1.19V clamp voltage. Releasing I_{TH}/RUN allows an internal 2.5µA current source to charge compensation capacitor C_C. When the I_{TH}/RUN pin voltage reaches 0.8V,

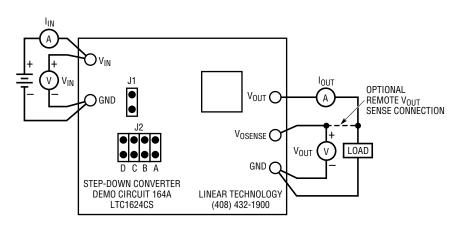


Figure 3. Proper Measurement Setup

the main control loop is enabled with the I_{TH}/RUN voltage pulled up by the error amp.

A built-in comparator guards against transient output overshoots >7.5% by turning off the top MOSFET and keeping it off until the output decreases.

Low Current Operation

The LTC1624 is capable of Burst Mode operation, in which the external MOSFET operates intermittently based on load demand. The transition to low current operation begins when a comparator detects that the I_{TH} /RUN voltage is below 1.5V. If the voltage across R_{SENSE} does not exceed approximately 20mV for one full cycle, the top and internal bottom drives will be disabled on the following cycles. This continues until the I_{TH} voltage exceeds 1.5V, which causes drive to be returned to TG on the next cycle.

INTV_{CC} Power/Boost Supply (C_B, D_B)

Power for the top and internal bottom MOSFET drivers is derived from V_{IN} . An internal regulator supplies the power. To power the top driver in step-down applications, an internal high voltage diode recharges the bootstrap capacitor C_B during each off cycle from the internal supply. A small internal N-channel MOSFET pulls the switch node (SW) to ground each cycle after the top MOSFET has turned off, ensuring that the bootstrap capacitor is kept fully charged.

When the top side MOSFET is to be turned on, the driver places the C_B voltage across the gate-source of the MOSFET. This enhances the MOSFET and turns on the top-side switch. The switch node voltage SW rises to V_{IN} and the BOOST pin rises to V_{IN} + 5V.

Significant efficiency gains can be realized by supplying top-side driver operating voltage from the output, since the V_{IN} current resulting from the driver and control currents will be scaled by a factor of (Duty Cycle)/(Efficiency). For 5V regulators this simply means connecting the BOOST pin though a small Schottky diode (such as a CMDH-3) to V_{OUT} .

For low input voltage operation ($V_{IN} \le 7V$), a Schottky diode can be connected from V_{IN} to BOOST to increase the external MOSFET gate drive voltage. Be careful not to

exceed the maximum voltage on the BOOST to SW pins of 7.8V.

$I_{TH}\,/\,RUN$ Function

The I_{TH}/RUN pin is a dual purpose pin that provides the loop compensation and a means to shut down the LTC1624.

An internal 2.5 μ A current source charges the external capacitor C_C (Figure 4). When the voltage on I_{TH}/RUN reaches 0.8V, the LTC1624 begins operating. At this point the error amplifier pulls up the I_{TH}/RUN pin to its maximum of 2.4V (assuming V_{OUT} is starting low). Soft start can also be implemented with this pin, as shown in Figure 4c. Soft start reduces surge currents from V_{IN} by gradually increasing the internal current limit. Power supply sequencing can also be accomplished using this pin.

During normal operation the voltage on the I_{TH}/RUN pin will vary from 1.19V to 2.4V, depending on the load current. Pulling the I_{TH}/RUN pin below 0.8V puts the LTC1624 into a low quiescent current shutdown ($I_Q < 30\mu A$). This pin can be driven directly from logic, as shown in Figures 4a and 4b.

The operating frequency is set internally to 200kHz.

In addition to shutdown, the dual function pin $I_{TH}\!/RUN$ allows external compensation for optimum load-step

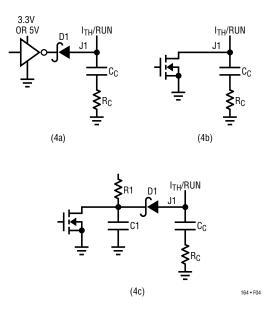


Figure 4. I_{TH}/RUN Pin Interfacing

response. Compensation is provided by R_C and C_C . The operating current level is user-programmable via an external current sense resistor (R_S) and is set to 3.0A. Short-circuit current limit is set to approximately 4A.

This demo board is optimized for 3.3V outputs. A wide input supply range allows operation from 4.8V to 28V for V_{OUT} voltages of 3.3V and 2.5V. For 5V outputs the minimum input voltage is 5.4V at full load.

The lowest operating input voltage is limited by the external MOSFET M1. For operation below 4.8V, subthresholdlevel MOSFETs should be substituted. The minimum input voltage of the LTC1624 is 3.5V.

Remote Output Voltage Sensing

Remote output voltage sensing can be accomplished by externally connecting a sense lead from V_{OSENSE} directly to the load. To prevent the output from overshooting in case of a sense-lead fault, a 10 Ω resistor (R6) is connected on the printed circuit board across the V_{OUT} and V_{OSENSE} terminals. This prevents V_{OSENSE} from floating. Connect the external load only to V_{OUT}, **not** to V_{OSENSE}. The surface mount 10 Ω resistor mentioned above cannot handle the load current that would pass though it should the load be incorrectly connected to V_{OSENSE}.

How to Measure Voltage Regulation

When trying to measure voltage regulation, remember that all measurements must be taken at the point of regulation. This point is where the LTC1624's control loop looks for the information to keep the output voltage constant. In this demonstration board this information point occurs between the signal ground and the output side of R1. These points correspond to the GND (E5) and $V_{OSENSE}(E4)$ terminals of the board. Output voltage test leads should be attached directly to these terminals. The load should be placed across V_{OUT} (E3) to GND (E5). Measurements **should not** be taken at the end of test leads at the load; refer to Figure 3 for the proper monitoring equipment configuration.

This applies to line regulation (input to output voltage regulation) as well as load regulation tests. In doing line regulation tests always look at the input voltage across the input terminals.

For the purposes of these tests the demonstration circuit should be fed from a regulated DC bench supply so additional variation on the DC input does not add an error to the regulation measurements.

Output Voltage Programming

The jumper (J2) selects the output voltage according to Table 1. Output voltages of 5V, 3.3V, 2.5V and one user programmable output voltage are jumper selectable. Resistor R5 (see Figure 1) is left unstuffed so a user selectable output voltage can easily be programmed.

The output voltage is set by a resistive divider according to the following formula (refer to Figure 1):

$$V_{OUT} = 1.19V \left(1 + \frac{R1}{RX}\right)$$

R1 is set to 35.7k; jumper J2 selects the value of RX. If no jumpers are in place for J2 or if only jumper J2D is selected without a resistor in place for R5, the output voltage will be 1.19V (since the equivalent value of RX will be infinite). Be careful not to exceed the output capacitor's maximum voltage rating of 10V when selecting R5.

At high input-to-output differential voltages, the on-time becomes very small. Due to internal gate delays and response times of the internal circuitry, the minimum recommended on-time is 450ns. Because this board allows for a wide output voltage range and the operating frequency remains constant at 200kHz, a potential duty cycle limitation exists when low output voltages are selected ($V_{OUT} < 2.5V$). When the duty cycle is less than 9%, cycle skipping may occur; this increases the inductor ripple current but does not cause V_{OUT} to lose regulation. Avoiding cycle skipping imposes a limit on the input voltage for a given output voltage only when $V_{OUT} < 2.2V$.

$$V_{IN(MAX)} = 11.1V_{OUT} + 5V$$
 For DC > 9%.

Modification For 5A Output Current

The DC164 demo board has provisions for higher output currents. Additional pad locations are available for adding one extra input and output capacitor together with a larger footprint for a Schottky diode. The following list shows the

component changes necessary for a 5A output current version:

- L1 Sumida CDRH127-10
- M1 Siliconix Si4410DY
- D1 Motorola MBRD835L
- R_S 0.02Ω
- C_C 680pF
- R_C 3.3k
- add: C_{IN3} AVX TPSE226M035R0300 C_{OUT3} AVX TPSD107M010R0065

At high input voltages the duty cycle decreases and the Schottky diode is on for a higher percentage of the cycle. This increases the diode's power dissipation. At higher input voltages together with high output currents, the Schottky diode will dissipate a couple of watts and heat sinking will be needed. Remember that the most stressful condition on the Schottky diode is a short circuit. For applications greater than 5A, synchronous operation may be preferred. Refer to the LTC1435 data sheet and demo board DC094.

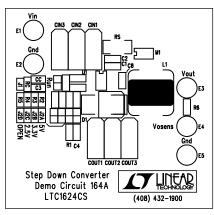
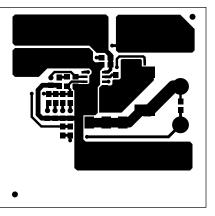
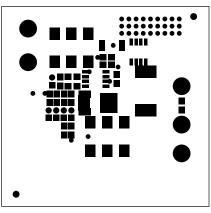
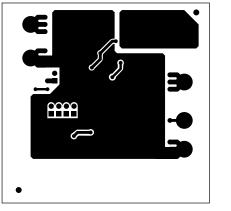
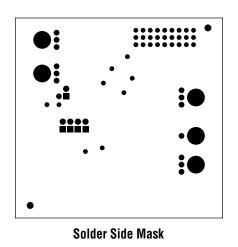

Component Manufacturers

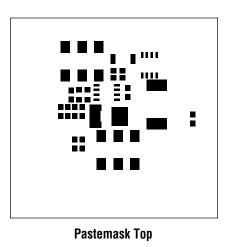
Table 1 is a partial list of alternate component manufacturers that can be used in LTC1624 applications. Using components other than the ones supplied on the demonstration board will require careful analysis to verify that no component specifications are exceeded. Finally, recharacterizing the circuit for efficiency is necessary.


MANUFACTURER	DEVICE	PHONE	FAX
AVX	Capacitors	(803) 448-9411	(803) 448-1943
Central Semiconductor	Diodes	(516) 435-1110	(516) 435-1824
Coilcraft	Inductors	(847) 639-6400	(847) 639-1469
Coiltronics	Inductors	(561) 241-7876	(561) 241-9339
COMM CON	Connectors	(818) 301-4200	(818) 301-4212
Dale	Inductors/Sense Resistors	(605) 665-9301	(605) 665-0817
International Rectifier	MOSFETs/Diodes	(310) 322-3331	(310) 322-3332
IRC	Sense Resistors	(512) 992-7900	(512) 992-3377
KRL	Sense Resistors	(603) 668-3210	(603) 624-0634
Motorola	MOSFETs/Diodes	(602) 244-3576	(602) 244-4015
Murata-Erie	Capacitors	(770) 436-1300	(770) 436-3030
Sanyo	Capacitors/MOSFETs	(619) 661-6835 [81] 0952-82-3959	(619) 661-1055 [81] 0952-82-4655
Siliconix	MOSFETs	(800) 554-5565	(408) 970-3979
Sprague	Capacitors	(603) 244-1961	(603) 224-1430
Sumida	Inductor	(847) 956-0666 [81] 03-3607-5111	(847) 956-0702 [81] 03-3607-5144
TDK	Inductors	(847) 803-6100	[81] 03-3278-5358

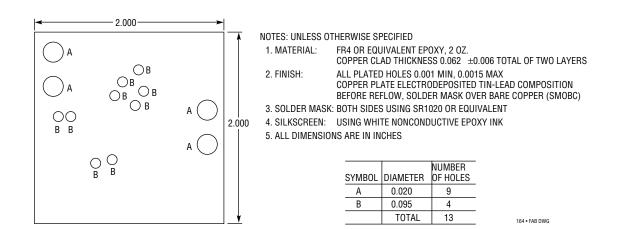

PCB LAYOUT AND FILM


Component Side Silkscreen


Component Side



Component Side Mask



Solder Side

PC FAB DRAWING

dc164f LT/TP 1097 500 • PRINTED IN USA

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFLEV MIC5281YMMEEV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2106-1.8-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ