LTM9012
 14-Bit, 125Msps Quad ADC with Integrated Drivers

DESCRIPTIOn

Demonstration circuit DC1732 supports the LTM ${ }^{\circledR} 9012$ high speed, quad ADC modules.
The versions of the 1732B demo board are listed in Table 1. Depending on the required resolution and sample rate, the DC1732 is supplied with the appropriate ADC. The circuitry on the analog inputs is optimized for full bandwidth. Refer
to the data sheet for proper input networks for different input frequencies.
Design files for this circuit board are available at http://www.linear.com/demo
$\boldsymbol{\boxed { T }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

Table 1. DC1732 Variants

DC1732 VARIANTS	ADC PART NUMBER	RESOLUTION	MAXIMUM SAMPLE RATE	INPUT RANGE*
$1732 \mathrm{~B}-\mathrm{AB}$	LTM9012-AB	$14-\mathrm{BIT}$	125 Msps	$220 \mathrm{mV} V_{P-p}$

*With SENSE pin tied to 1.8 V .

PGRFORMANCE SUMMARY $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITION	VALUE
Supply Voltages - DC1732B	Depending on Sampling Rate, This Supply Must Provide Up to 700mA.	3 V to $6 \mathrm{~V}, 5 \mathrm{~V}$ to 6 V
Analog Input Range	Depending on SENSE Pin Voltage	110 mV P-p to 220 mV P-p
Logic Input Voltages	Minimum Logic High	1.3 V
	Maximum Logic Low	0.6 V
Logic Output Voltages (Differential)	Nominal Logic Levels (100 Ω Load, 3.5mA Mode)	$350 \mathrm{mV} / 1.25 \mathrm{~V}$ Common Mode
	Minimum Logic Levels (100 Ω Load, 3.5mA Mode)	$247 \mathrm{mV} / 1.25 \mathrm{~V}$ Common Mode
Sampling Frequency (Convert Clock Frequency)	See Table 1	
Encode Clock Level	Single-Ended Encode Mode (ENC- Tied to GND)	0 OV to 3.6V
Encode Clock Level	Differential Encode Mode (ENC ${ }^{-}$not Tied to GND)	0.2 V to 3.6V
Resolution	See Table 1	
Input Frequency Range	See Table 1	
SFDR	See Applicable Data Sheet	
SNR	See Applicable Data Sheet	

DEMO MANUAL DC1732

DUICK START PROCEDURE

Demonstration circuit 1732 is easy to set up to evaluate the performance of the LTM9012 modules. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below. Figure 2 shows the pinout of the analog input header.

Setup

If a DC1371 data acquisition and collection system was supplied with the DC1732 demonstration circuit, follow the DC1371 quick start guide to install the required software and for connecting the DC1371 to the DC1732 and to a PC.

DC1732 Demonstration Circuit Board Jumpers

The DC1732 demonstration circuit board should have the following jumper settings as default positions. (as per Figure 1)
J2: PAR/SER: Selects parallel or serial programming mode. (default - serial)

Optional Jumpers

J1: Term: Enables/disable optional output termination. (default - removed)
J5: ILVDS: Selects either 1.75 mA or 3.5 mA of output current for the LVDS drivers. (default - removed)

J3: LANE: Selects either 1-lane or 2-lane output modes (default - removed) NOTE: The DC1371 does not support 1-lane operation.

J4: SHDN: Enables and disables the LTM9012. (default - removed)
J10: WP: Enable/disables write protect for the EEPROM. (default - removed)
Note: optional jumper should be left open to ensure proper serial configuration.

Applying Power and Signals to the DC1732 Demonstration Circuit

The DC1371 is used to acquire data from the DC1732. The DC1371 must FIRST be connected to a powered USB port and have 5 V applied power BEFORE applying DC power to the DC1732. DC1732 requires 3 V to 6 V at TP1 and 5 V to 6 V at TP4 for proper operation.
The DC1732 demonstration circuit requires up to 700 mA depending on the sampling rate and the A / D converter supplied.
The DC1732 should not be removed, or connected to the DC1371 while power is applied.

Figure 1. DC1732 Setup

PUICK START PROCEDURE

Figure 2. Pinout for Analog Input Header (J15)

Analog Input Network

For optimal distortion and noise performance the RC network on the analog inputs may need to be optimized for different analog input frequencies. For full bandwidth operation, no series RC elements should be used.
In almost all cases, filters will be required on both analog input and encode clock to provide data sheet SNR.
The filters should be located close to the inputs to avoid reflections from impedance discontinuities at the driven end of a long transmission line. Most filters do not present 50Ω outside the passband. In some cases, 3 dB to 10 dB pads may be required to obtain low distortion.
If your generator cannot deliver full-scale signals without distortion, you may benefitfrom a medium poweramplifier based on a gallium arsenide gain block prior to the final
filter. This is particularly true at higher frequencies where IC based operational amplifiers may be unable to deliver the combination of low noise figure and high IP3 point required. A high order filter can be used prior to this final amplifier, and a relatively lower Q filter used between the amplifier and the demo circuit.
Apply the analog input signal of interest to the header on the DC1732 demonstration circuit board marked "J15". There is access to the eight analog inputs. For a pin out of this header see Figure 2 in this quick start guide, or the attached schematic.

Encode Clock

NOTE: Apply an encode clock to the SMA connector on the DC1732 demonstration circuit board marked " J 11 CLK ${ }^{+\prime}$. As a default the DC1732 is populated to have a single-ended input.

For the best noise performance, the ENCODE INPUT must be driven with a very low jitter, square wave source. The amplitude should be large, up to $3 \mathrm{~V}_{\text {P-p }}$ or 13 dBm . When using a sinusoidal signal generator a squaring circuit can be used. Linear Technology also provides demo board DC1075A that divides a high frequency sine wave by four, producing a low jitter square wave for best results with the LTM9012.
Using bandpass filters on the clock and the analog input will improve the noise performance by reducing the wideband noise power of the signals. In the case of the DC1732 a bandpass filter used for the clock should be used prior to the DC1075A. Data sheet FFT plots are taken with 10 pole LC filters made by TTE (Los Angeles, CA) to suppress signal generator harmonics, non harmonically related spurs and broadband noise. Low phase noise Agilent 8644B generators are used for both the clock input and the analog input.

Digital Outputs

Data outputs, data clock, and frame clock signals are available on J 9 of the DC1732. This connector follows the VITA-57/FMC standard, but all signals should be verified when using an FMC carrier card other than the DC1371.

DEMO MANUAL DC1732

PUICK START PROCEDURE

Software

The DC1371 is controlled by the PScope system software provided or downloaded from the Linear Technology website at http://www.linear.com/software/.
To start the data collection software if "PScope.exe", is installed (by default) in \Program FilesLLTC\PScopel, double click the PScope icon or bring up the run window under the start menu and browse to the PScope directory and select PScope.
If the DC1732 demonstration circuit is properly connected to the DC1371, PSCOPE should automatically detect the DC1732, and configure itself accordingly.
If everything is hooked up properly, powered and a suitable convert clock is present, clicking the "Collect" button should result in time and frequency plots displayed in the PScope window. Additional information and help for PScope is available in the DC1371 quick start guide and in the online help available within the PScope program itself.

Serial Programming

PScope has the ability to program the DC1732 board serially through the DC1371. There are several options available in the LTM9012 family that are only available through serially programming. PScope allows all of these features to be tested.

These options are available by first clicking on the "Set Demo Bd Options" icon on the PScope toolbar (Figure 3).
This will bring up the menu shown in Figure 4.

Figure 3. PScope Toolbar
This menu allows any of the options available for the LTM9012 family to be programmed serially. The LTM9012 family has the following options:

Figure 4. Demobd Configuration Options.

Randomizer: Enables data output randomizer Off (default): Disables data output randomizer On: Enables data output randomizer
Two's Complement: Enables two's complement mode
Off (default): Selects offset binary mode
On: Selects two's complement mode
Sleep Mode: Selects between normal operation, sleep mode:

Off (default): Entire ADC is powered, and active
On: The entire ADC is powered down.
Channel 1 Nap: Selects between normal operation and putting channel 1 in nap mode.

Off (default): Channel 1 is active
On: Channel 1 is in nap mode

PUICK START PROCEDURE

Channel 2 Nap: Selects between normal operation and putting channel 2 in nap mode.

Off (default): Channel 2 is active
On: Channel 2 is in nap mode
Channel 3 Nap: Selects between normal operation and putting channel 3 in nap mode.

Off (default): Channel 3 is active
On: Channel 3 is in nap mode
Channel 4 Nap: Selects between normal operation and putting channel 4 in nap mode.

Off (default): Channel 4 is active
On: Channel 4 is in nap mode
Output Current: Selects the LVDS output drive current
1.75 mA (default): LVDS output driver current
2.1 mA : LVDS output driver current
2.5 mA : LVDS output driver current
3.0mA: LVDS output driver current
3.5 mA : LVDS output driver current
4.0mA: LVDS output driver current
4.5mA: LVDS output driver current

Internal Termination: Enables LVDS internal termination Off (default): Disables internal termination On: Enables internal termination
Outputs: Enables digital outputs Enabled (default): Enables digital outputs Disabled: Disables digital outputs
Test Pattern: Selects digital output test patterns. The desired test pattern can be entered into the text boxes provided.

Off (default): ADC input data is displayed
0 n : Test pattern is displayed
Once the desired settings are selected hit OK and PScope will automatically update the register of the device on the DC1732 demo board.

DEMO MANUAL DC1732

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	T1	BALUN, 1:1, SMT, SM-22	MACOM MABA-007159-000000
2	6	C2, C3, C4, C11, C12, C13	CAP, X5R, 1 $\mu \mathrm{F}, 10 \mathrm{~V}, 10 \%, 0603$	AVX 0603ZD105KAT
3	1	C7	CAP, X5R, $2.2 \mu \mathrm{~F}, 10 \mathrm{~V}, 10 \%, 0603$	AVX 0603ZD225KAT
4	2	C5, C14	CAP, TANT, 100 $\mu \mathrm{F}, 10 \mathrm{~V}, 10 \%$, C 6032	VISHAY 293D107X9010C2TE3
5	8	C33, C34, C35, C37 to C41	CAP, X7R, 0.01 F, 16V, 10\%, 0603	AVX 0603YC103KAT
6	3	C21, C30, C31	CAP, X7R, 0.01 F, 16V, 10\%, 0402	AVX 0402YC103KAT
7	1	C8	CAP, X5R, 1 1 F, 10V, 10\%, 0402	AVX 0402ZD105KAT
8	8	C6, C9, C23 to C27, C36	CAP, X5R, 0.1 $\mu \mathrm{F}, 10 \mathrm{~V}, 10 \%, 0402$	AVX 0402ZD104KAT
9	2	C1, C10	CAP, X5R, 4.7 μ F, 10V, 10\%, 0603	AVX 0603ZD475KAT
10	0	C20, C28, C32	CAP, DNI, 0402	OPT
11	0	D1	DIODE, DNI, SOT-23	OPT
12	1	J9	CONNECTOR, FMC MEZZAININE	SAMTEC ASP-134606-01
13	2	J6, J8	CONN, SMA 50Ω PC MOUNT, FEMALE	AMPHENOL 132134
14	10	$\begin{aligned} & \mathrm{J} 1 \text { to } \mathrm{J} 5, \mathrm{~J} 10, \\ & \mathrm{~J} 11, \mathrm{~J} 12, \mathrm{~J} 13, \mathrm{~J} 14 \end{aligned}$	HEADER, $3 \times 1,2 \mathrm{~mm}$	SAMTEC TMM-103-02-L-S
15	1	J15	HEADER, $2 \times 25,2 \mathrm{~mm}$	SAMTEC SQT-125-01-F-D
16	1	J7	HEADER, $2 \times 7,2 \mathrm{~mm}$	MOLEX 87831-1421
17	0	L4	IND, DNI, 0603	OPT
18	1	R69	RES, 0Ω JUMPER, 0603	VISHAY CRCW06030000ZOED
19	3	R70, R71, R72	RES, 0Ω JUMPER, 0805	VISHAY CRCW08050000ZOED
20	3	L1, L2, L3	IND, BEAD, 1206	MURATA BL31PG330SN1L
21	11	$\begin{aligned} & \text { R2, R4, R5, R6, R9, R10, R11, } \\ & \text { R61 to R64 } \end{aligned}$	RES, 1k, 1\%, 1/16W, 0402	PANASONIC ERJ-2RKF1001X
22	1	R3	RES, 31.6k, 1\%, 1/16W, 0402	PANASONIC ERJ-2RKF3162X
23	8	R39 to R46	RES, 33k, 1\%, 1/16, 0402	PANASONIC ERJ-2RKF3302X
24	1	R7	RES, 1.74k, 1\%, 1/16W, 0402	PANASONIC ERJ-2RKF1741X
25	4	R65, R66, R67, R68	RES, 33.0, 1\%, 1/16W, 0402	PANASONIC ERJ-2RKF33ROX
26	4	R1, R31, R32, R33	RES, 10k, 1\%, 1/16, 0402	PANASONIC ERJ-2RKF1002X
27	0	$\begin{aligned} & \text { R12 to R15, R17, R21, R23 to R26, } \\ & \text { R48 to R56, R60 } \end{aligned}$	RES, DNI, 0402	OPT
28	14	C22, C29, R16, R18, R22, R29, R34, R36, R37, R38, R47, R57, R58, R59	RES, 0Ω JUMPER, 0402	VISHAY CRCW04020000ZOED
29	2	R19, R20	RES, 49.9, 1\%, 1/16, 0402	PANASONIC ERJ-2RKF49R9X
30	5	R8, R27, R28, R30, R35	RES, 100, 1\%, 1/16, 0402	PANASONIC ERJ-2RKF1000X
31	5	TP1, TP2, TP3, TP4, TP5	TURRET, 0.093	MILL MAX 2501-2-00-80-00-00-07-0
32	1	U1	IC, VREG, 1.8V, 500MA, S08	LINEAR TECHNOLOGY LT1763CS8-1.8

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
33	1	U2	MODULE, LTM9012	LINEAR TECHNOLOGY LTM9012-AB
34	1	U4	IC, SERIAL_EEPROM, TSSOP8	MICROCHIP 24LC32-IST
35	1	U3	IC, VREG, ADJ, 500MA, S08	LINEAR TECHNOLOGY LT1763CS8
36	1		STENCIL SET	STENCIL DC1732B
37	1		FAB, PCB, DC1732B	DEMO CIRCUIT DC1732B

DEMO MANUAL DC1732

sCHEmATIC DIAGRAM

SCHEMATIC DIAGRAM

DEMO MANUAL DC1732

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

