DEMO MANUAL DC1741B

## LTC4370 Two-Supply Diode-OR Current Balancing Controller

## DESCRIPTIOn

Demonstration circuit DC1741B features the LTC®4370, a two supply diode-OR current sharing controller in a typical 2.9 V to $18 \mathrm{~V}, 16 \mathrm{~A}$ sharing application.
The maximum MOSFET voltage drop $V_{F R}=V_{I N}-$ OUT is set with an external resistor, up to 600 mV . A fast gate turn-on reduces the load voltage droop during supply switchover. If the input supply fails or is shorted, a fast turn-off minimizes the transient reverse current.

Disabling the Ioad sharing function turns the LTC4370 into a dual ideal diode controller.
Two enable input pins, $\overline{E N} 1$ and $\overline{E N 2}$, allow enabling and disabling each rail's MOSFET individually while the MOSFETs' inherent diodes create diode-OR connection
when the MOSFETs are disabled. The LTC4370 provides a rich set of features to support shared current diode-ORed applications including:

- Load Sharing Between Two Supplies
- Elimination of the Need for Active Control of Input Supplies
- Elimination of "Share Bus"
- Reverse Current Blocking
- Elimination of Shoot-Through Current During Start-Up or Faults

Design files for this circuit board are available.
All registered trademarks and trademarks are the property of their respective owners.

## PERFORMADCE SUMMARY specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {IN }}$ | $\mathrm{V}_{\text {IN1 }}$ and $\mathrm{V}_{\text {IN2 }}$ Input Voltage Operating Range | With External $\mathrm{V}_{\text {CC }}$ Supply | $\begin{gathered} 2.9 \\ 0 \end{gathered}$ |  | $\begin{gathered} 18 \\ V_{C C} \end{gathered}$ | V |
| $\mathrm{V}_{\text {CC(EXT) }}$ | $\mathrm{V}_{\text {CC }}$ External Supply Operating Range | $\mathrm{V}_{\text {IN1 }}, \mathrm{V}_{\text {IN2 }} \leq \mathrm{V}_{\text {CC }}$ | 2.9 |  | 6.0 | V |
| $\mathrm{V}_{\text {CC(REG })}$ | V CC Regulated Voltage |  | 4.5 | 5 | 5.5 | V |
| $\mathrm{V}_{\text {EA }(0 S)}$ | Error Amplifier Input Offset |  |  | 0 | $\pm 2$ | mV |
| $\mathrm{gm}_{\mathrm{m}(\mathrm{EA})}$ | Error Amplifier Gain |  |  | 150 |  | $\mu \mathrm{S}$ |
| $V_{\text {FR }}$ | Forward Regulation Voltage (VIN $-\mathrm{V}_{\text {OUT }}$ ) | $\begin{aligned} & V_{I N}=1.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5 \mathrm{~V} \\ & \mathrm{~V}_{I N}=12 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 2 \\ & 2 \end{aligned}$ | $\begin{aligned} & 12 \\ & 25 \end{aligned}$ | $\begin{aligned} & 25 \\ & 50 \end{aligned}$ | mV mV |
| $\Delta V_{\text {GATE }}$ | MOSFET Gate Drive (GATE- ${ }_{\text {IN }}$ ) | $\begin{aligned} & V_{\text {FWD }}=0.2 \mathrm{~V} ; \mathrm{I}=0,-1 \mu \mathrm{~A} ; \text { Highest } \mathrm{V}_{I N}=12 \mathrm{~V} \\ & \mathrm{~V}_{\text {FWD }}=0.2 \mathrm{~V} ; \mathrm{I}=0,-1 \mu \mathrm{~A} ; \text { Highest } \mathrm{V}_{\mathrm{IN}}=2.9 \mathrm{~V} \end{aligned}$ | $\begin{aligned} & 10 \\ & 4.5 \end{aligned}$ | $\begin{gathered} 12 \\ 7 \end{gathered}$ | $\begin{gathered} 14 \\ 9 \end{gathered}$ | V |
| $\overline{I_{\text {GATE }}}$ | GATE1, GATE2 Fast Pull-Up Current GATE1, GATE2 Fast Down-Up Current GATE1, GATE2 Off Pull-Down Current | $\begin{aligned} & V_{\text {FWD }}=0.4 \mathrm{~V}, \Delta V_{\text {GATE }}=0 \mathrm{~V}, \mathrm{CPO}=17 \mathrm{~V} \\ & V_{\text {FWD }}=-2 \mathrm{~V}, \Delta V_{\text {GATE }}=5 \mathrm{~V}, \\ & \text { Corresponding EN }=1 \mathrm{~V}, \Delta V_{\text {GATE }}=2.5 \mathrm{~V} \end{aligned}$ | $\begin{gathered} -0.9 \\ 0.9 \\ 65 \\ \hline \end{gathered}$ | $\begin{gathered} \hline-1.4 \\ 1.4 \\ 110 \\ \hline \end{gathered}$ | $\begin{array}{r} \hline-1.9 \\ 1.9 \\ 160 \\ \hline \end{array}$ | A $A$ $\mu A$ |
| $\mathrm{V}_{\text {EN(TH) }}$ | EN1, EN2 Threshold Voltage | EN Falling | 580 | 600 | 620 | mV |
| $\Delta V_{\text {GATE(ON) }}$ | MOSFET On-Detect Threshold (GATE-VIN) | FETON Transitions High | 0.28 | 0.7 | 1.1 | V |
| $\underline{\text { IOUT }}$ | Maximum Continuous Load Current | Sharing active, limited by SUM90N04-3m3P-E3 Dissipation |  |  | 16.6 | A |

## DEMO MANUAL DC1741B

## OPERATING PRINCIPLES

The LTC4370 controls N-channel MOSFETs, M1 and M2, to share the load between two input rails. The error amplifier compares OUT1 and OUT2, and controls servo amplifiers which regulate the MOSFET forward voltage drop to $\mathrm{V}_{\mathrm{FR}}$. Combined action of the error amplifier and servo amplifiers forces OUT1 and OUT2 to be equal and as a result the rail currents are equal. The board RANGE resistor $\mathrm{R} 3=30.1 \mathrm{k}$ defines the maximum regulation voltage range as 265 mV to 375 mV .

The board is assembled with SUM90N04-3m3P-E3 N-channel MOSFETs, which in a single channel application has current capability up to 20A. In the load share mode, the installed components guarantee continuous proper load sharing up to 16.6A total load. For a short test time of 3 to 5 seconds, it is possible to double this load.

Two LEDs, OFF1 and OFF2, indicate the MOSFETs' status. Each LED lights up when the gate voltage is less than 0.7 V above $\mathrm{V}_{\text {IN }}$.

Pay special attention to the power supply features used with the LTC4370.

This controller may not work properly with supplies utilizing synchronized rectification in the output stage unless the internal circuit of the supply has the ability to limit negative current or to block it completely. Exercise caution when using the controller with this type of supply unless it is determined that it contains the required circuitry.

## PUICK START PROCEDURE

Demonstration circuit DC1741B is easy to set up to evaluate the performance of the LTC4370. Refer to Figure 1 for proper measurement equipment setup for load share observation.

1. Turn both supplies on. Adjust two 5 V supplies' outputs to a 215 mV difference, which equals the minimum $\Delta V_{\text {IN(MIN) }}$ load share breakpoint ( $265 \mathrm{mV}-50 \mathrm{mV}$ ). Load the LTC4370 output with minimal current so that both supplies contribute current to the common load. Increase load up to 35A and observe the LTC4370 operation mode with accurate load sharing. It is easy to estimate load share accuracy by measuring a voltage between two sense resistors. Since the MOSFETs will be dissipating excessive power, limit this measurement to 3 to 5 seconds when at the 35 A level.
2. Reduce the load current to a total of 7.5 A . Adjust the two 5 V supplies' outputs to a voltage difference of 373 mV , which equals the maximum $\Delta \mathrm{V}_{\text {IN(MAX) }}$ Ioad share breakpoint ( $375 \mathrm{mV}-2 \mathrm{mV}$ ). As the difference between power supplies output is greater than the maximum voltage regulation, the LTC4370 channel with the higher voltage will provide most of the current. Increase the voltage until all of the current is provided by the higher voltage supply. This is the point at which the MOSFET of the higher voltage channel MOSFET is fully enhanced while the MOSFET of the lower channel voltage is completely cut off. Observe that the LED of the lower supply is illuminated.


Figure 1. Load Share Performance Measurement

## DEMO MANUAL DC1741B

## PARTS LIST

| ITEM | QTY | REFERENCE | PART DESCRIPTION | MANUFACTURER/PART NUMBER |
| :---: | :---: | :--- | :--- | :--- |
| Required Circuit Components | Cap., X7R, $0.18 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%, 0805$ |  |  |  |
| 1 | 1 | CC | Cap., X7R, $0.1 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%, 0805$ | AVX, 08053C184KAT2A |
| 2 | 1 | CV ${ }_{\text {CC }}$ | Cap., X7R, $0.039 \mu \mathrm{~F}, 50 \mathrm{~V}, 10 \%, 0805$ | AVX, 08055C104KAT2A |
| 3 | 2 | C1, C2 | LED, RED | AVX, 08055C393KAT2A |
| 4 | 2 | D1, D2 | Current Limiting Diode, 3.2V, S0D-80 | Central Semi. Corp. CMJ3500 |
| 5 | 2 | D3, D4 | Curret, Testpoint 0.063" | Mill-Max, 2308-2-00-80-00-00-07-0 |
| 6 | 7 | E1, E2, E3, E4, E5, E7, E8 | Keystone, 575-4 |  |
| 7 | 4 | J1, J2, J4, J5 | Connector, Banana Jack | Vishay, SUM90N04-3m3P-E3 |
| 8 | 2 | M1, M2 | Res., WSL 0.002 1W, 1\%, 2512 | Vishay, WSL25122L000FEA |
| 9 | 2 | R1, R2 | Res., Chip 30.1k, 0.1W 1\%, 0805 | Vishay, CRCW080530K1FKEA |
| 10 | 1 | R3 | Res., Chip 10k, 0.1W, 5\%, 0805 | Vishay, CRCW080510K0JNEA |
| 11 | 2 | R4, R6 | Res., 0805 | OPT |
| 12 | 0 | R5, R7 | I.C., Diode-0R Load Share Cont., DFN16DE-4 $\times 3$ | Linear Technology Corp., LTC4370CDE |
| 13 | 1 | U1 |  |  |

## SCHEMATIC DIAGRAM




## Legal Terms and Conditions

By using the evaluation board discussed herein (together with any tools, components documentation or support materials, the "Evaluation Board"), you are agreeing to be bound by the terms and conditions set forth below ("Agreement") unless you have purchased the Evaluation Board, in which case the Analog Devices Standard Terms and Conditions of Sale shall govern. Do not use the Evaluation Board until you have read and agreed to the Agreement. Your use of the Evaluation Board shall signify your acceptance of the Agreement. This Agreement is made by and between you ("Customer") and Analog Devices, Inc. ("ADI"), with its principal place of business at One Technology Way, Norwood, MA 02062, USA. Subject to the terms and conditions of the Agreement, ADI hereby grants to Customer a free, limited, personal, temporary, non-exclusive, non-sublicensable, non-transferable license to use the Evaluation Board FOR EVALUATION PURPOSES ONLY. Customer understands and agrees that the Evaluation Board is provided for the sole and exclusive purpose referenced above, and agrees not to use the Evaluation Board for any other purpose. Furthermore, the license granted is expressly made subject to the following additional limitations: Customer shall not (i) rent, lease, display, sell, transfer, assign, sublicense, or distribute the Evaluation Board; and (ii) permit any Third Party to access the Evaluation Board. As used herein, the term "Third Party" includes any entity other than ADI, Customer, their employees, affiliates and in-house consultants. The Evaluation Board is NOT sold to Customer; all rights not expressly granted herein, including ownership of the Evaluation Board, are reserved by ADI. CONFIDENTIALITY. This Agreement and the Evaluation Board shall all be considered the confidential and proprietary information of ADI. Customer may not disclose or transfer any portion of the Evaluation Board to any other party for any reason. Upon discontinuation of use of the Evaluation Board or termination of this Agreement, Customer agrees to promptly return the Evaluation Board to ADI. ADDITIONAL RESTRICTIONS. Customer may not disassemble, decompile or reverse engineer chips on the Evaluation Board. Customer shall inform ADI of any occurred damages or any modifications or alterations it makes to the Evaluation Board, including but not limited to soldering or any other activity that affects the material content of the Evaluation Board. Modifications to the Evaluation Board must comply with applicable law, including but not limited to the RoHS Directive. TERMINATION. ADI may terminate this Agreement at any time upon giving written notice to Customer. Customer agrees to return to ADI the Evaluation Board at that time. LIMITATION OF LIABILITY. THE EVALUATION BOARD PROVIDED HEREUNDER IS PROVIDED "AS IS" AND ADI MAKES NO WARRANTIES OR REPRESENTATIONS OF ANY KIND WITH RESPECT TO IT. ADI SPECIFICALLY DISCLAIMS ANY REPRESENTATIONS, ENDORSEMENTS, GUARANTEES, OR WARRANTIES, EXPRESS OR IMPLIED, RELATED TO THE EVALUATION BOARD INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, TITLE, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF INTELLECTUAL PROPERTY RIGHTS. IN NO EVENT WILL ADI AND ITS LICENSORS BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES RESULTING FROM CUSTOMER'S POSSESSION OR USE OF THE EVALUATION BOARD, INCLUDING BUT NOT LIMITED TO LOST PROFITS, DELAY COSTS, LABOR COSTS OR LOSS OF GOODWILL. ADI'S TOTAL LIABILITY FROM ANY AND ALL CAUSES SHALL BE LIMITED TO THE AMOUNT OF ONE HUNDRED US DOLLARS ( $\$ 100.00$ ). EXPORT. Customer agrees that it will not directly or indirectly export the Evaluation Board to another country, and that it will comply with all applicable United States federal laws and regulations relating to exports. GOVERNING LAW. This Agreement shall be governed by and construed in accordance with the substantive laws of the Commonwealth of Massachusetts (excluding conflict of law rules). Any legal action regarding this Agreement will be heard in the state or federal courts having jurisdiction in Suffolk County, Massachusetts, and Customer hereby submits to the personal jurisdiction and venue of such courts. The United Nations Convention on Contracts for the International Sale of Goods shall not apply to this Agreement and is expressly disclaimed.

## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

