DESCRIPTIOn

Demonstration Circuit 1827A features a 110V LED controller with spread spectrum frequency modulation - the LT®3795. Unlike most boosts, the circuit disconnects the output to protect against shorts or other fault conditions when the input voltage exceeds the output. The input voltage range for normal operation is from 8 V to 60 V . OVLO becomes active for inputs above 63 V and the maximum input voltage is 110 V . The LED current is 400 mA and the switching frequency is 250 kHz . The efficiency is 92% when the input is 12 V and the LED voltage is at 87 V which is the maximum LED voltage.
Spread spectrum switching is available to simplify conducted emissions compliance. There is a 47 nF capacitor from the RAMP pin to ground to set the rate at which frequency modulation occurs, but resistor R20 shorting the RAMP pin capacitor must be removed to activate spread spectrum.
OVLO and EN/UVLO are both set using resistor dividers. EN/UVLO is set so the circuit will UVLO when the input voltage falls below 6 V and will turn on when the input voltage rises above 7.5 V .

Current sense resistors program LED current and input regulation current and also determine the monitoring voltages that indicate output and input current. The LED current is set by RS2. ISMON provides a 2.5V/1A voltage that is used to monitor the LED current. Input current regulation occurs at 4A and is set by RS3. IVINCOMP provides a $300 \mathrm{mV} / 1 \mathrm{~A}$ voltage that is used to monitor the input current. Capacitor C11 on the IVINCOMP pin provides compensation for the input current regulation loop. CTRL1 and CTRL2 are analog dimming inputs that allow external voltages to reduce the LED current from the programmed maximum. CTRL1 and CTRL2 are pulled up to the $V_{\text {REF }}$ pin by 100 k resistors. SHORTLED and OPENLED are open-collector status flag outputs that are pulled up to the INTV cc pin voltage.
The circuit requires application of an external voltage to the PWM terminal for operation. The external voltage can be a DC level or an appropriate pwm dimming signal. A
common frequency for PWM dimming is 100 Hz . The high-side PMOS FET that is used for pwm dimming also disconnects the output to protect against shorts.
The soft-startpin (SS) is configured so the circuitwill hiccup when a fault occurs and will not latch off. The demo circuit also supports the adjustment capability of the LT3795 for switching frequency and feedback loop compensation.
The FB pin is programmed using a resistor divider to limit the output voltage in case there is no LED string on the output. When an open LED transient occurs either at start up or because the LED string opens, the peak output voltage may overshoot to 100 V but FB will regulate the settled output voltage to 95 V .
The demo circuituses ceramic input and output capacitors. An aluminum electrolytic capacitor can be easily added to the input if it is necessary for stability during conducted emissions testing. The 120V switching MOSFET allows 110 V on the input. FB programming inhibits switching at high output voltages so the 100 V rating of the rectifier is not exceeded.

The demo circuit is designed to be easily reconfigured to buck mode, buck-boost mode and SEPIC topologies. There are example schematics in the data sheet. Consult the factory for assistance.
Maximum input and output voltages of 110V, spread spectrum switching, fault protection and full monitoring make the LT3795 attractive for high voltage and high power LED circuits, battery chargers and voltage regulators that require an accurate current limit. DC1827A uses the LT3795EFE which is packaged in a thermally enhanced 28 -lead TSSOP. The LT3795 data sheet must be read in conjunction with this demo manual to properly use or modify DC1827A.

> Design files for this circuit board are available at http://www.linear.com/demo/DC1827A

$\boldsymbol{\boxed { } \boldsymbol { \top }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

DEMO MANUAL DC1827A

PGRFORMANCG SUMmARY
Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Minimum Input, $\mathrm{V}_{\text {PVIN }}$	$\mathrm{V}_{\text {LED }}=87 \mathrm{~V}, \mathrm{l}_{\text {LED }} \leq 400 \mathrm{~mA}$			8	V
Maximum Input - Switching, VPVIN	$\mathrm{V}_{\text {LED }}=87 \mathrm{~V}, \mathrm{l}_{\text {LED }} \leq 400 \mathrm{~mA}$	60			V
Maximum Input - Not Switching, VPVIN	$\mathrm{V}_{\text {OVLO }} \geq 1.25 \mathrm{~V}$	110			V
Maximum LED Voltage, V ${ }_{\text {LED }}$		87			V
LED Current, ILED	RS2 $=0.62 \Omega$		400		mA
Input EN Voltage, VPVIN(EN)	$V_{\text {PVIN }}$ Rising R1 $=499 \mathrm{k}, \mathrm{R} 2=115 \mathrm{k}, \mathrm{R} 3=12.4 \mathrm{k}$		7.5		V
Input UVLO Voltage, VPVIN(UVLO)	$V_{\text {PVIN }}$ Falling R1 $=499 \mathrm{k}, \mathrm{R} 2=115 \mathrm{k}$, R3 $=12.4 \mathrm{k}$		6		V
Input OVLO Turn-Off Voltage, VPVIN(OVLO_TURN-OFF)	$V_{\text {PVIN }}$ Rising R1 $=499 \mathrm{k}, \mathrm{R} 2=115 \mathrm{k}, \mathrm{R} 3=12.4 \mathrm{k}$		63.1		V
Input OVLO Turn-On Voltage, VPVIN(OVLO_TURN-on)	$V_{\text {PVIN }}$ Falling R1 $=499 \mathrm{k}, \mathrm{R} 2=115 \mathrm{k}$, R3 $=12.4 \mathrm{k}$		62.1		V
Efficiency	$\begin{aligned} & V_{\text {PVIN }}=12 \mathrm{~V}, V_{\text {LED }}=87 \mathrm{~V}, \mathrm{I}_{\text {LED }}=400 \mathrm{~mA} \\ & V_{\text {PVIN }}=24 \mathrm{~V}, V_{\text {LED }}=87 \mathrm{~V}, \mathrm{I}_{\text {LED }}=400 \mathrm{~mA} \\ & V_{\text {PVIN }}=48 \mathrm{~V}, V_{\text {LED }}=87 \mathrm{~V}, \mathrm{I}_{\text {LED }}=400 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 92 \\ & 91 \\ & 92 \end{aligned}$		\% \% \%
Switching Frequency	R5 $=31.6 \mathrm{k}$		250		kHz
Input Current Limit	RS3 $=0.015 \Omega$		4		A

PUICK START PROCEDURE

It is easy to set up DC1827A to evaluate the performance of the LT3795. Follow the procedure below:

NOTE: PWM must be pulled high to work. If PWM is not used, connect the PWM terminal to a 2 V to 5 V DC source or connect the PWM pin to $\mathrm{V}_{\text {REF }}$ on the PCB using R18.

1. Connect a string of LEDs with a forward voltage of 87 V or less, but greater than the $\mathrm{PV} \mathrm{IN}^{\text {N }}$ voltage, to the LED+ and GND terminals on the PCB as shown in Figure 1.
2. Connect the EN/UVLO terminal to GND.
3. With the power off, connect the input power supply to the PVIN and GND terminals within the voltage range specified on the PCB. Make sure that the input power supply voltage does not exceed the forward voltage of the LED string. OVLO becomes active to inhibit switching for an input voltage greater than 63V.
4. Connect an input to the PWM terminal. If PWM is not used, connect PWM to a 2 V to 5 V DC source or to $\mathrm{V}_{\text {REF }}$ on the PCB using resistor R18. PWM must be pulled high to work. For PWM dimming, connect a 100 Hz or higher PWM signal to the PWM terminal.
5. Turn the PVIN power supply on.
6. Release the EN/UVLO to GND connection.
7. Observe the LED string running at the programmed LED current; or, observe the reduction of brightness in the LED string with PWM dimming.

PUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Setup for DC1827A

DEMO MANUAL DC1827A

PUICK START PROCEDURE

DC1827A F02
Figure 2. Conducted Emissions without Spread Spectrum (RAMP Pin Grounded) and the Improvement that Occurs with Spread Spectrum Switching (47nF at RAMP Pin)

Figure 4. The LED String is 87 V . This Output Current vs Input Voltage Graph Shows the Wide Input Voltage Range and the Input Voltages at Which UVLO, Turn-On and OVLO Occur. Input Current Limit Occurs When $V_{\text {IN }}$ Is 10 V or Less.

DC1827A F03
Figure 3. DC1827A Efficiency with $87 V_{\text {LED }}$ at 400 mA

Figure 5. LED Current During PWM Dimming at 100 Hz

DEMO MANUAL DC1827A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	C1	Cap., X7R 1 1 F 100V 20\% 1206	AVX 12061C105MAT2A
2	7	C2, C3, C4, C7, C8, C9	Cap., X7R 2.2 $\mu \mathrm{F} 100 \mathrm{~V}$ 10\% 1210	Murata GRM32ER72A225KA35L
		C10		
3	1	C5	Cap., X5R 4.7pF 10V 10\% 0603	AVX 0603ZD475KAT2A
4	1	C6	Cap., X7R 0.1 FF 25V 10\% 0603	AVX 06033C104KAT2A
5	1	C12	Cap., X7R 0.01~F 10V 10\% 0603	AVX 0603ZC103KAT1A
6	1	D1	Schottky Diode 5A POWERDI5	Diodes Inc. PDS5100-13
7	1	L1	Inductor, $22 \mu \mathrm{H}$ HC9-SERIES	Cooper Bussmann HC9-220-R
8	1	M1	Mosfet N-Channel, 120V/44A Super S08	Infineon BSC190N12NS3G
9	1	M2	Mosfet P-Channel, 150V PowerPak 1212-8	Vishay Siliconix Si7115DN-T1-E3
10	1	RS1	Res., LRC 0.015 0.5W 1\% 2010	IRC LRC-LR2010LF-01-R015-F
11	1	RS2	Res., LRC 0.620 0.5W 1\% 2010	SEI CSRN2010FKR620
12	1	R4	Res., Chip 1.00M 0.06W 1\% 0603	NIC NRC06F1004TRF
13	1	R5	Res., Chip 31.6k 0.06W 1\% 0402	Vishay CRCW040231K6FKED
14	1	R6	Res., Chip 13.3k 0.06W 1\% 0402	Vishay CRCW040213K3FKED
15	1	R7	Res., Chip 10k 0.06W 5\% 0402	Vishay CRCW040210K0JNED
16	1	U1	I.C., LED Driver TSSOP28-FE/EB	Linear Tech. Corp. LT3795EFE

DEMO MANUAL DC1827A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Hardware 1 18 E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13, E14, E15, E16, E17, E18 Turret, Testpoint				Mill Max 2501-2-00-80-00-00-07-0

DEMO MANUAL DC1827A

SCHEMATIC DIAGRAM

DEMO MANUAL DC1827A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPÓSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MIC2870YFT EV ADP8860DBCP-EVALZ LM3404MREVAL ADM8843EB-EVALZ TDGL014 ISL97682IRTZEVALZ LM3508TLEV EA6358NH MAX16826EVKIT MAX16839EVKIT+ TPS92315EVM-516 MAX1698EVKIT MAX6956EVKIT+ OM13321,598 DC986A DC909A DC824A STEVAL-LLL006V1 IS31LT3948-GRLS4-EB 104PW03F PIM526 PIM527 MAX6946EVKIT+ MAX20070EVKIT\# MAX21610EVKIT\# MAX20090BEVKIT\# MAX20092EVSYS\# PIM498 AP8800EV1 ZXLD1370/1EV4 MAX6964EVKIT MAX25240EVKIT\# MAX25500TEVKITC\# MAX77961BEVKIT06\# 1216.1013 TPS61176EVM-566 TPS61197EVM TPS92001EVM-628 $\underline{1270} \underline{1271.2004} \underline{1272.1030} \underline{1273.1010} \underline{1278.1010} \underline{1279.1002} \underline{1279.1001} \underline{1282.1000} \underline{1293.1900} \underline{1293.1800} \underline{1293.1700} \underline{1293.1500}$

