LTC3862-2
 Low Noise PolyPhase ${ }^{\circledR}$ SEPIC DC/DC Converter

DESCRIPTION

Demonstration circuit 1891A is a 2-phase high efficiency nonisolated SEPIC (single ended primary inductor converter) converter featuring the LTC®3862-2 switching controller. The DC1891A converts a 6V to 60V input to a 12 V output and provides 6A of output current. The converter operates at 300 kHz (600 kHz output ripple) with efficiency around 90%. With a proper amount of airflow, the DC1891A converter can generate over 6A of output current. The DC1891A can be easily modified to generate output voltages in the range from 0.8 V to 48 V .

Also, the DC1891A can be optimized for specific input voltages. The narrowing of input voltage range can increase the converter's efficiency. Therefore, a narrow input voltage range is more desirable.

The LTC3862-2 can be synchronized to an external clock of up to 400 kHz . Please refer to LTC3862-2 data sheet for design details and applications information.

Design files for this circuit board are available at http://www.linear.com/demo

$\boldsymbol{\mathcal { T }}$, LT, LTC, LTM, Linear Technology, PolyPhase and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY

Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	VALUE
Minimum Input Voltage	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$ to 6 A	6 V
Maximum Input Voltage	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$ to 6 A	60 V
V $_{\text {OUT }}$	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$ to $60 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$ to 6 A	$12 \mathrm{~V} \pm 3 \%$
Typical Output Ripple $\mathrm{V}_{\text {OUT }}$	$\mathrm{V}_{\text {IN }}=6 \mathrm{~V}$ to $60 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A}$ to 6 A	100 mV P-P
Nominal Switching Frequency		300 kHz

QUICK START PROCEDURE

Demonstration circuit 1891A is easy to set up to evaluate the performance of the LTC3862-2 circuit. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

NOTE: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUt }}$ and GND terminals. See Figure 2 for the proper scope probe technique.

1. With power off, connect the input power supply to $V_{\text {IN }}$ and GND. Make sure that the input power supply has sufficient current rating at minimum input voltage for the required output load.
2. Turn on the power at the input.

NOTE: Make sure that the input voltage does not exceed 60 V.
3. Check for the proper output voltage.
$V_{\text {OUT }}=12 \mathrm{~V}, \pm 3 \%$.
If there is no output, temporarily disconnect the load to make sure that the load is not set too high.
4. Once the proper outputvoltage is established, adjust the load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters.
5. The DC1891A is equipped with an input capacitor $\mathrm{C}_{\text {IN4 }}$ that is optional and is used to help with filtering when the board is connected to the lab supply with long leads. The capacitor $\mathrm{C}_{\text {IN4 }}$ can be removed if the input power source is close and has low source impedance.

CHANGING THE OUTPUT VOLTAGE

To set the output voltage lower or higher than 12 V , change the bottom voltage divider resistor connected to the FB pin of U1 (see the Schematic Diagram). Also, check the MOSFET, output diode and capacitor voltage ratings if the output voltage is set higher than 12 V .
The optional $Q 5$ circuit is used to get the circuit running. Once the circuit is running, the 12 V output is used to bias U1 via D2. The start-up circuit Q5 is turned off by Q6 when V VUt gets to the level set by D3, R14 and R16 that activates Q6. Please contact the LTC factory for details.

PUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Setup

Figure 2. Measuring Input or Output Ripple

PUICK START PROCEDURE

Figure 3. Reducing the Input Voltage Range and Selecting More Optimal MOSFET, Diode and Inductor Can Optimize the Efficiency of DC1891A

OUTPUT LOAD STEP RESPONSE

The Ioad step response of DC1891A is very fast even though a relatively small amount of output capacitance is present ($188 \mu \mathrm{~F}$ ceramic and $440 \mu \mathrm{~F}$ electrolytic). The load step transients are shown in Figure 4. To improve load step response further or to reduce the output ripple, more output capacitance can be added. Low ESR output capacitors will have the greatest effect on reducing the ripple and load step transients.

Figure 4. Fast Transient Response of DC1891A is Achieved with a Small Amount of Output Capacitance

SOFT-START FUNCTION

The DC1891A features a soft-start circuit that controls the inrush current and output voltage ramp at start-up. The capacitor $\mathrm{C}_{S S}$ controls the start-up period. The start-up waveforms are shown in Figure 5.

Figure 5. The DC1891A Ramps the Output Slowly at Start-Up without Generating an Input Current Surge

DEMO MANUAL DC1891A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	CC2	CAP, NPO 100pF, 25V, 5\%, 0603	AVX 06033A101JAT2A
2	4	C3, C4, CSS, C5	CAP, X7R 0.01~F 25V 10\% 0603	AVX 06033C103KAT2A
3	1	CC1	CAP, X5R 0.015 ${ }^{\text {F 25V 10\% } 0603}$	AVX 06033D153KAT2A
4	1	C1	CAP, NPO 1000pF 25V 10\% 0603	AVX 06033A102JAT2A
5	1	C2	CAP, X5R, 2.2 $2 \mathrm{~F}, 25 \mathrm{~V}, 10 \%, 0805$	AVX 08053D225KAT2A
6	1	CIN4	CAP, $33 \mu \mathrm{~F}, 63 \mathrm{~V}$	SUN ELECT, 63HVH33MS
7	1	CU1	CAP, X7R 4.7 F F 50V 10\% 1206	MURATA GRM31CR71H475KA12L
8	7	CS1 TO CS4, CIN1 T0 CIN3	CAP, X7S 4.7 $\mu \mathrm{F} 100 \mathrm{~V}$ 20\% 1812	TDK C4532X7S2A475M
9	4	COUT1 TO COUT4	CAP, X7S 47 1 F 16V 20\% 1812	TDK CKG45NX7S1C476M
10	2	COUT5, COUT6	CAP, 220^F 16V APXE	UNITED CHEMI-CON APX160ARA221MHA0G
11	1	CF	CAP, X7R 0.01~F 16V 10\% 0603	AVX 0603YC103KAT2A
12	2	D3, D5	ZENER DIODE, SOD-323	NXP SEMI PDZZ.8B
13	1	D4	DIODE, SOD-523	NXP SEMI BAS516
14	2	D1, D2	SCHOTTKY RECTIFIER, TO-277A	VISHAY V8P10-M3/86A
15	2	Q2, Q4	POWER MOSFET, PG-TDSON-8	INFINEON BSC060N10NS3G
16	1	Q5	PNP TRANSISTOR, SOT-23	NXP SEMI PBSS9110T
17	2	Q6, Q8	NPN TRANSISTOR, SOT-323	NXP SEMI PMST5550
18	1	Q7	NPN TRANSISTOR, SC-75	NXP SEMI BC847T
19	1	RC1	RES, CHIP 13.7k, 1\% 0603	VISHAY CRCW060313K7FKEA
20	1	ROSC	RES, CHIP 43.2k, 1\% 0603	VISHAY CRCW060343K2FKED
21	2	R4, R10	RES, CHIP 10, 5\% 0603	VISHAY CRCW060310ROJNEA
22	2	RF, R17	RES, CHIP 0 Ω, Jumper 0603	VISHAY CRCW06030000ZOEA
23	1	R9	RES, CHIP 110k, 1\% 0805	VISHAY CRCW0805110KFKEA
24	1	R1	RES, CHIP 12.4k, 1\% 0603	VISHAY CRCW060312K4FKEA
25	1	R3	RES, CHIP 845k, 1\% 0603	VISHAY CRCW0603845KFKEA
26	1	R11	RES, CHIP 249k, 1\% 0603	VISHAY CRCW0603249KFKEA
27	2	R6, R8	RES, $0.005 \Omega, 1 / 2 \mathrm{~W}, 1 \%, 2010$	VISHAY WSL20105L000FEA
28	1	R12	RES, CHIP 33k, 1\% 0603	VISHAY CRCW060333KOFKEA
29	1	R13	RES, CHIP 220k, 1\% 0603	VISHAY CRCW0603220KFKEA
30	1	R14	RES, CHIP 56k, 1\% 0603	VISHAY CRCW060356K0FKEA
31	2	R15, R16	RES, CHIP 10k, 1\% 0603	VISHAY CRCW060310KOFKEA
32	1	R19	RES, CHIP 100k, 1\% 0603	NIC NRC06F1003TRF
33	1	R20	RES, CHIP 180k, 1\% 0603	VISHAY CRCW0603180KFKEA
34	2	T1,T2	COUPLED INDUCTOR, 6.8 $\mu \mathrm{H}$	WÜRTH 7448709068
35	1	U1	PWM CONTROLLER LTC3862EFE-2	LINEAR TECHNOLOGY LTC3862EFE-2

DEMO MANUAL DC1891A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Additional Demo Board Circuit Components				
1	0	Q1, Q3 (0PT)	MOSFET, PG-TDSON-8	
2	0	R18 (OPT)	RES, CHIP 0603	
3	0	R7, R5 (OPT)	RES, CHIP 2010	

Hardware: For Demo Board Only

1	6	E3 TO E8	TESTPOINT, TURRET, 0.094"	MILL-MAX 2501-2-00-80-00-00-07-0
2	2	E1, E2	STUD, TEST PIN	PEM KFH-032-10ET
3	4	E1, E2 (2 each)	NUT BRASS, \# 10-32 M/S BR PL	ANY 10-32
4	2	E1, E2	RING, LUG \# 10	KEYSTONE, 8205
5	2	E1, E2	WASHER \#10, TIN PLATED BRASS	ANY \#10EXT BZ TN
6	4	JP1 T0 JP4	HEARDER, 3PIN 1 ROW 0.079CC	SULLINS NRPN031PAEN-RC
7	4	JP1 TO JP4	SHUNT, 0.079" CENTER	SAMTEC 2SN-BK-G
8	1	SW1	SWITCHE, SEALED TOGGLE	C\&K GT11MCBE (THRU-HOLE)
9	4	STAND-OFF	STAND-OFF, NYLON 0.50" TALL	KEYSTONE 8833(SNAP ON)
10	1		FAB, PRINTED CIRCUIT BOARD	DEMO CIRCUIT 1891A

DEMO MANUAL DC1891A

SCHEMATIC DIAGRAM

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPÓSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

