DEMO MANUAL DC1897B

LTC3605A 20V, 5A Monolithic Synchronous Step-Down Regulator

DC1897B can alsotrack another voltage with the LTC3605A track function. Because of the high switching frequency of the LTC3605A, which is programmable up to 4 MHz , the DC1897B uses low profile surface mount components. All these features make the DC1897B an ideal circuit for use in industrial applications and distributed power systems
Design files for this circuit board are available at http://www.linear.com/demo
$\boldsymbol{\Omega T}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY

Table 1. Performance Summary

PARAMETER	CONDITIONS	VALUE
Input Voltage Range		4 V to 20V
Output Voltage Range		0.6 V to 5V
Run/Shutdown		GND = Shutdown
		$\mathrm{V}_{\text {IN }}=$ Run
Output Voltage Regulation	$\begin{aligned} & V_{\text {IN }}=4 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A} \text { to } 5 \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=4.7 \mathrm{~V} \text { to } 20 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~A} \text { to } 5 \mathrm{~A} \\ & \mathrm{~V}_{\text {IN }}=6.4 \mathrm{~V} \text { to } 20 \mathrm{~V}, I_{\text {OUT }}=0 \mathrm{~A} \text { to } 5 \mathrm{~A} \end{aligned}$	$2.5 \mathrm{~V} \pm 2 \%$ Typical (2.45V to 2.55 V) $3.3 \mathrm{~V} \pm 2 \%$ Typical (3.234 V to 3.366 V) $5 \mathrm{~V} \pm 2 \%$ Typical (4.9V to 5.1V)
Typical Output Ripple Voltage	$\begin{aligned} & \mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V} \\ & \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}(20 \mathrm{MHz} \mathrm{BW}) \\ & \hline \end{aligned}$	$<20 \mathrm{mV}$ P-P
Discontinuous Mode	$\begin{aligned} & V_{\text {IN }}=12 \mathrm{~V}, V_{\text {OUT }}=2.5 \mathrm{~V} \\ & V_{\text {IIN }}=12 \mathrm{~V}, V_{\text {OUT }}=3.3 \mathrm{~V} \\ & V_{\text {IN }}=12 \mathrm{~V}, V_{\text {OUT }}=5 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Iout }<1.25 \mathrm{~A} \\ & \mathrm{I}_{\text {OUT }}<1.45 \mathrm{~A} \\ & \mathrm{I}_{\text {OUT }}<1.65 \mathrm{~A} \\ & \hline \end{aligned}$
Phase	$\begin{aligned} & \text { Phase }=\text { INTV } C C \\ & \text { Phase }=\text { GND } \\ & \text { Phase }=\text { Floating } \end{aligned}$	180° Out-of-Phase: 2 Phase 120° Out-of-Phase: 3 Phase 90° Out-of-Phase: 4 Phase
Nominal Switching Frequency	$\mathrm{R}_{\mathrm{T}}=162 \mathrm{k}$	$1 \mathrm{MHz} \pm 20 \%$

Table 2. Jumper Description

JUMPER	FUNCTION	RANGE/SETTING (DEFAULT)
JP1	Output Voltage Setting	2.5 V
JP5	Phase Mode (PHMODE): 180 Degrees Out-of-Phase (DOP) - 2 Phase, 120 DOP - 3 Phase, or 90 DOP - 4 Phase	(2 PHASE) - 3 PHASE - 4 PHASE
JP6	Mode: Forced Continuous Mode (FCM) or Discontinuous Mode (DCM)	(FCM) - DCM
JP7	Run	(ON) - 0FF

DEMO MANUAL DC1897B

PUICK START PROCEDURE

Demonstration Circuit 1897 is easy to set up to evaluate the performance of the LTC3605A. For proper measurement equipment configuration, set up the circuit according to the diagram in Figure 1. Before proceeding to test, check that the shunts are inserted into these positions: the 2.5 V output voltage header JP1, the 180° out-of-phase (2-PHASE) position of the phase mode (PHMODE) header JP5, the forced continuous mode (FCM) position of mode header JP6, and the on position of run header JP7.
When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the VIN or VOUT and GND terminals. See Figure 2 for proper scope probe measurement technique.
Withthe DC1897B set up according to the proper measurement configuration and equipment in Figure 1, apply 6.3V at VIN (do not increase $\mathrm{V}_{\text {IN }}$ over the rated maximum supply voltage of 20 V , or the part may be damaged). Measure $V_{\text {Out; ; it should read } 2.5 \mathrm{~V} \text { (If desired, the quiescent current }}$ of the circuit can be monitored now by swapping the shunt in header JP7 into the OFF position). The output voltage should be regulating. Measure $\mathrm{V}_{\text {OuT }}$-it should measure $2.5 \mathrm{~V} \pm 2 \%$ (2.45 V to 2.55 V).

Vary the input voltage from 4 V to 20 V and adjust the load current from 0 to 5 A . $\mathrm{V}_{\text {OUT }}$ should regulate around 2.5 V $\pm 3 \%(2.425 \mathrm{~V}$ to 2.575 V$)$. Measure the output ripple volt-age-it should measure less than 30 mV AC.

Observe the voltage waveform at the switch pins (the other side of the inductor from the output). Verify the switching frequency is between 800 kHz and 1.2 MHz ($\mathrm{t}=1.25 \mathrm{~ns}$ and 833ns), and that the switch node waveform is rectangular in shape.
Change the shunt position on the MODE header from FCM to DCM (discontinuous mode). Set the input voltage to 12 V and the output current to any current less than 1A. Observe the discontinuous mode of operation at the switch node, and measure the output ripple voltage. It should measure less than 100 mV AC.

Insert the JP7 shunt into the OFF position and move the shunt in the 2.5 V output JP1 header into any of the two remaining output voltage option headers: 3.3V (JP2) or 5 V (JP3). Just as in the 2.5V VOUT test, the output voltage should read VOUT $\pm 1 \%$ tolerance under static line and load conditions and $\pm 1 \%$ tolerance under dynamic line and load conditions ($\pm 2 \%$ total). Also, the circuit operation in discontinuous mode will be the same. When finished, turn off the circuit by inserting the shunt in header JP7 into the OFF position.

PUICK START PROCEDURE

Figure 1. Proper Equipment Measurement Setup

Figure 2. Measuring Input or Output Ripple

DEMO MANUAL DC1897B

PUICK START PROCEDURE

Normal Switching Frequency and Output Ripple Voltage Waveforms

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}, \mathrm{f}_{\text {SW }}=1 \mathrm{MHz}$
Trace 1: Switch Voltage (5V/Div)
Trace 2: Output Ripple Voltage ($20 \mathrm{mV} / \mathrm{Div}$ AC)
Figure 3. Switch Node and Output Ripple Voltage Waveforms

Load Step Response Waveforms

$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=2.5 \mathrm{~V}, 5 \mathrm{~A}$ Load Step (0A to 5A)
Forced Continuous Mode, $\mathrm{f}_{\mathrm{sw}}=1 \mathrm{MHz}$
Trace 2: Output Voltage ($100 \mathrm{mV} /$ Div AC)
Trace 4: Output Current (2A/Div)
Figure 5. Load Step Response

Load Step Response Waveforms

[^0]Figure 4. Load Step Response

Load Step Response Waveforms

$V_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, 5 \mathrm{~A}$ Load Step (0A to 5 A)
Forced Continuous Mode, $\mathrm{f}_{\mathrm{Sw}}=1 \mathrm{MHz}$
Trace 2: Output Voltage ($100 \mathrm{mV} / \mathrm{Div}$ AC)
Trace 4: Output Current (2A/Div)
Figure 6. Load Step Response

PUICK START PROCEDURE

2-Phase Dual Output Waveforms

$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT1 }}=2.5 \mathrm{~V}, \mathrm{I}_{\text {OUT1 }}=5 \mathrm{~A}, \mathrm{~V}_{\text {OUT2 }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=5 \mathrm{~A}$, $\mathrm{f}_{\mathrm{SW}}=1 \mathrm{MHz}$
Trace 1: $\mathrm{V}_{\text {OUT1 }}$ Switch Voltage (10V/Div)
Trace 4: L1 Ripple Current (5A/Div)
Trace 3: $\mathrm{V}_{\text {OUT2 }}$ Switch Voltage (10V/Div)
Trace 2: L2 Ripple Current (5A/Div)
Figure 7. Switch Node Voltage and Inductor Ripple Current Waveforms of Two Circuits Operating 180° Out-of-Phase

Figure 8. Efficiency Graph

DEMO MANUAL DC 1897B

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				

1	1	C1	CAP, 0805 2.2 2 F 20\% 10V X5R	AVX 0805ZD225MAT2A
2	2	C2, C3	CAP, 1210 22 $\mu \mathrm{F} 20 \% 25 \mathrm{~V}$ X7R	MURATA GRM32ER61E226ME15L
3	1	C4	CAP, $06030.1 \mu \mathrm{~F} 20 \% 25 \mathrm{~V}$ X7R	AVX 06033C104MAT2A
4	2	C5, C12	CAP, 1206 47 H 20\% 10V X5R	TAIYO YUDEN LMK316BJ476ML-T
5	1	C6	CAP, 0402 220pF 20\% 50V COG	AVX 04025A221MAT2A
6	1	C7	CAP, 0402 10pF 20\% 50V COG	AVX 04025A100MAT2A
7	1	C8	CAP, 0402 100pF 20\% 50V COG	AVX 04025A101MAT2A
8	1	D1	DIODE, CMDSH-3, SOD-323	CENTRAL SEMI. CMDSH-3TR
9	1	L1	IND 1.0нH	VISHAY IHLP2525CZER1R0M01
10	1	R1	RES, 0402 162k 1\% 1/16W	VISHAY, CRCW0402162KFKED
11	1	R2	RES, 0402 10k 1\% 1/16W	VISHAY CRCW040210K0FKED
12	1	R3	RES, 0402 14k 1\% 1/16W	VISHAY CRCW040214K0FKED
13	1	R4	RES, 0402 3.16k 1\% 1/16W	VISHAY CRCW04023K16FKED
14	1	R13	RES, 04020Ω JUMPER	VISHAY CRCW04020000ZOED
15	1	U1	IC, QFN24	LINEAR TECHNOLOGY, LTC3605AEUF

Additional Demo Board Circuit Components

1	2	C9, C15	CAP, $06030.1 \mu \mathrm{~F} 20 \%$ 25V X7R	AVX 06033C104MAT2A
2	1	C10	CAP, $734322 \mu \mathrm{~F} 20 \%$ 35V TANT	AVX TPSY226M035R
3	0	C11	CAP, 12060 PTION	OPTION
4	0	C13, C14	CAP, $181222 \mu \mathrm{~F} \mathrm{20} \mathrm{\%} \mathrm{25V} \mathrm{X7R} \mathrm{OPTION}$	TDK C4532X7R1E226M OPTION
5	1	R5	RES, $04022.21 \mathrm{k} 1 \% 1 / 16 \mathrm{~W}$	VISHAY CRCW04022K21FKED
6	1	R6	RES, $04021.37 \mathrm{k} 1 \% 1 / 16 \mathrm{~W}$	VISHAY CRCW04021K37FKED
7	0	R7, R12	RES, 0402 0PTION	OPTION
8	4	R8, R10, R14, R15	RES, $0402100 \mathrm{k} 5 \% 1 / 16 \mathrm{~W}$	VISHAY CRCW0402100KJNED
9	1	R9	RES, $0402150 \mathrm{k} 5 \% 1 / 16 \mathrm{~W}$	VISHAY CRCW0402150KJNED
11	1	R11	RES, $040210 \Omega 5 \% 1 / 16 \mathrm{~W}$	VISHAY CRCW040210ROJNED

Hardware-For Demo Board Only

1	9	E1-E9	TURRET	MIIL-MAX 2501-2-00-80-00-00-07-0
2	4	JP1, JP2, JP3, JP4	HEADER, SINGLE ROW, 2-PIN, 2mm	SULLINS, NRPN021PAEN-RC
3	1	JP5	HEADER, 3-PIN, DBL ROW 2mm	SULLINS, NRPN03PAEN-RC
4	1	JP6	HEADER, 2mm DBL ROW (2X2) 4-PIN	SULLINS, NRPN022PAEN-RC
5	1	JP7	HEADER, 2mm, 3-PIN	SULLINS, NRPN031PAEN-RC
6	4	JP1, JP5-JP7	SHUNT, 2mm	SAMTEC 2SN-BK-G

SCHEMATIC DIAGRAM

DEMO MANUAL DC1897B

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

[^0]: $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}$, 5 A Load Step (0 A to 5 A)
 Forced Continuous Mode, $\mathrm{f}_{\mathrm{Sw}}=1 \mathrm{MHz}$
 Trace 2: Output Voltage ($200 \mathrm{mV} / \mathrm{Div}$ AC)
 Trace 4: Output Current (2A/Div)

