High Current Synchronous Inverting Buck-Boost LED Driver

DESCRIPTIOn

Demonstration circuit 1930A is ahigh current synchronous inverting buck-boostLED driverfeaturing the LT®3744. The uniquedrive stage used on the LT3744 allows the anodes of three LEDs to be connected together for better heat sinking in both the step-down configuration and the inverting buckboostconfiguration. The pros and cons ofeach configuration can be found in the data sheet. This demonstration circuit 1930A is for customers to test the inverting buck-boost configuration. The step-down configuration is shown in a separate demonstration circuit DC2339A.
The components are optimized for the efficiency, thermal and PWM dimming for a 12 V input. Each of the three outputs is up to 5 V , 12 A with a 6.05 V maximum output voltage limit. The PWM1, PWM2 and PWM3 pins are set to low by default. A DC or PWM signal is required to connect to at least one of the PWM pins to enable the circuit. At any giving time, output current only passes through one LED determined by settings of PWM pins.
The CTRL1, CTRL2 and CTRL3 pins can be adjusted to provide accurate analog dimming down to 20:1 ratio.
The input voltage range for the LT3744 to operate is from 3.3 V to 36 V . However, to maintain the output current regulation in an inverting buck-boost regulator, the actual input voltage range is determined by the load current, voltage, the maximum duty cycle, etc. For a 5V, 12 Aload , the demo board operating input range should limit to 7 V to 30 V at room temperature. The load to be used with this demo board is high current LEDs or laser diodes. Smaller

LEDs may not be able to handle the high current, even for a short period of time. It is necessary to mount the LED load on a proper heat sink. A fan may become necessary to avoid exceeding LED's maximum temperate rating.
The typical efficiency of the demo board is 89.3% from a 12 V input to $4 \mathrm{~V}, 12 \mathrm{~A}$ load. If an efficiency measurement is needed in an application, the output voltage must be measured at the output capacitors instead of the LED load. This prevents cable loss from being counted as loss of the board.
The demo circuit DC1930A achieves fast current rise time from 0 A to 12 A in $5 \mathrm{\mu s}$. To see the real rise time, wires between the LED and the board should be as short as possible to minimize the wire inductance and resistance. It is recommended to measure the voltage across R32 with a short 50Ω coax cable directly into a BNC connector on the oscilloscope. Figure 1 shows the current rise time. The current can be calculated from the measured voltage. A current probe adds more delays to the rise time so using a current probe is not recommended unless rise time is not a concern.
The LT3744 data sheet gives a complete description of the part, operation and application information. The data sheet must be read in conjunction with this quick start guide for demo circuit 1930A.

Design files for this circuit board are available at http://www.linear.com/demo/DC1930A

[^0]
PERFORMANCE SUMMARY Specifications are at $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
PVIN*	Input Supply Voltage	LED Voltage $=5 \mathrm{~V}$	7		30	V
$\mathrm{V}_{\mathrm{LED}^{+} \text {to } \mathrm{V}_{\text {LED }}{ }^{-}}$	Maximum Output Voltage			6.05		V
IOUT	Output Current	CTRL1, CTRL2, CTRL3 $=1.5 \mathrm{~V}$	11.4	12	12.6	A
FSW	Switching Frequency		270	300	330	kHz
EFF	Efficiency at DC	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=12 \mathrm{~A}, \mathrm{~V}_{\text {OUT }}=4 \mathrm{~V}$		89.3		\%

[^1]
DEMO MANUAL DC1930A

DESCRIPTIOn

Figure 1: DC1930A Current Rise Time: $V_{I N}=12 \mathrm{~V}$, LED Voltage $=4.2 \mathrm{~V}$ when 0 N . Total LED Current $=12 \mathrm{~A}$

PUICK START PROCEDURE

Demonstration circuit 1930A is easy to set up to evaluate the performance of the LT3744. Refer to Figure 2 for proper measurement equipment setup and follow the procedure below:

1. With power off, connect the input power supply to PV IN and GND. Note: make sure $\mathrm{PV}_{\text {IN }}$ is below 30 V .
2. With power off, connect the LED load to $\mathrm{V}_{\text {LED }}{ }^{+}$and proper LED1 $^{-}$, LED2 $^{-}$, LED3 $^{-}$according to the setting of the PWM pins.
3. Turn on the power at the input.
4. Carefully evaluate other design parameters as needed.

DEMO MANUAL DC1930A

PUICK START PROCEDURE

Figure 2. Proper Measurement Equipment Setup

DEMO MANUAL DC1930A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	4	C1, C2, C24, C25	CAP., X7R, 10¢F, 50V, 10\%, 1210	MURATA, GRM32ER71H106KA12L
2	1	C4	CAP., ALUM., ELECT., 56 FF, 50V	SUN ELECTRONIC INDUSTRIES CORP., 50HVT56M
3	1	C6	CAP., X7R, $0.22 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \% 0603$	MURATA, GRM188R71E224KA88D
4	1	C7	CAP., X7R, 1 1 F, 50V, 10\% 0805	AVX, 08055C105KAT2A
5	1	C8	CAP., X7R, 22 $\mu \mathrm{F}, 6.3 \mathrm{~V}, 20 \% 0805$	AVX, 08056D226MAT2A
6	1	C9	CAP., X5R, 10 ${ }^{\text {F, }} 25 \mathrm{~V}, 20 \% 1206$	AVX, 12063D106MAT2A
7	3	C11, C12, C16	CAP., POSCAP, 470^F, 6.3V, D4D	PANASONIC, 6TPF470MAH
8	1	C14	CAP., X5R, 2.2 $2 \mathrm{~F}, 25 \mathrm{~V}, 10 \% 0603$	MURATA, GRM188R61E225KA12D
9	1	C18	CAP., X7R, 10nF, 25V, 10\% 0603	AVX, 06033C103KAT2A
10	5	C19, C26-C29	CAP., X7R, 1nF, 25V, 10\% 0603	AVX, 06033C102KAT2A
11	3	C21, C22, C23	CAP., X7R, 33nF, 25V, 10\% 0603	MURATA, GRM188R71E333KA01D
12	1	D1	SCHOTTKY RECTIFIER, 40V, SOD523	NXP, PMEG4002EB
13	2	D3, D4	DIODE, BAT54A SOT23	DIODES INC., BAT54A-7-F
14	1	D5	DIODE, SBR1A40S3 SOD-323	DIODES INC., SBR1A40S3-7
15	1	L1	INDUCTOR, $0.82 \mu \mathrm{H}$	WURTH ELEKTRONIK, 744355182
16	2	Q1, Q2	N-CH., 40-V, PG-TDSON-8	INFINEON, BSC035N04LS G
17	2	Q3, Q5	N-CH., 40-V, PG-TDSON-8	INFINEON, BSCO26N04LS
18	3	Q4, Q6, Q7	N-CH., 12-V, POWERPAK S0-8	VISHAY, Si7234DP-T1-GE3
19	3	Q8-Q10	N-CH., 40-V, PG-TDSON-8 FL	INFINEON, BSCO10N04LS
20	9	R3, R6, R7, R8, R10, R20, R21, R22, R23	RES., CHIP., 100k, 1/10W, 1\%0603	VISHAY, CRCW0603100KFKEA
21	9	R1, R4, R12, R13, R29-R31, R33, R36	RES., CHIP., $0 \Omega, 1 / 10 \mathrm{~W}, 0603$	VISHAY, CRC06030000ZOEA
22	1	R5	RES., CHIP., $0.003 \Omega, 3 \mathrm{~W}, 1 \%$, KRL6432	SUSUMU, KRL6432E-M-R003-F
23	1	R14	RES., CHIP., 4.02k, 1/10W, 1\% 0603	VISHAY, CRCW06034K02FKEA
24	1	R16	RES., CHIP., 82.5k, 1/10W, 1\% 0603	VISHAY, CRCW060382K5FKEA
25	3	R17, R18, R19	RES., CHIP., 309k, 1/10W, 1\% 0603	VISHAY, CRCW0603309KFKEA
26	1	R25	RES., CHIP., 143k, 1/10W, 1\% 0603	VISHAY, CRCW0603143KFKEA
27	1	R27	RES., CHIP., 1k, 1/10W, 1\% 0603	VISHAY, CRCW06031K00FKEA
28	1	R32	RES., CHIP., $0.005 \Omega, 3 \mathrm{~W}, 1 \%$, KRL6432	SUSUMU, KRL6432D-M-R005-F
29	1	U1	I.C. LT3744EUHE 36-PIN, UHE	LINEAR TECH., LT3744EUHE\#PBF

Additional Demo Board Circuit Components

1	0	C5 (OPT)	CAP., ALUM., ELECT.	
2	0	C10, C13, C15 (OPT)	CAP., D4D	
3	0	C17 (OPT)	CAP., 0603	
4	0	D2 (OPT)	DIODE, DI123	
5	0	R2, R9 (OPT)	RES., CHIP., 0603	

Hardware For Demo Board Only

1	16	E1-E16	TESTPOINT, TURRET, 0.094" PBF	MILL-MAX, 2501-2-00-80-00-00-07-0
2	8	J1-J8	JACK BANANA	KEYSTONE, 575-4
3	4	(STAND-OFF)	STAND-OFF, NYLON 0.50" (SNAP 0N)	WURTH ELEKTRONIK, 702935000

SCHEMATIC DIAGRAM

DEMO MANUAL DC1930A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT'TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

> Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

[^0]: $\boldsymbol{\mathcal { C }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

[^1]: *The board operating voltage range is narrower than the IC operating range in an inverting buck-boost configuration.

