No-Opto Flyback Converter with Synchronous Rectifier

DESCRIPTION

Demonstration circuit 1961A features the LT® 8309 , a secondary synchronous driver in an isolated, no optocoupler, flyback converter. It regulates a $12 \mathrm{~V}, 5 \mathrm{~A}$ output from a 36V to 72 V input source.

Output regulation is handled on the primary side by the LT3748, a boundary conduction mode flyback controller which senses output voltage directly from the primary, resulting in a simple flyback schematic with no opto-coupler.

The LT8309 synchronous rectifier driver replicates the behavior of a diode by sensing the synchronous MOSFET drain-to-source voltage to determine its turn on period. By replacing the diode with a N-channel MOSFET, applications are no longer restricted by the heat constraints of the rectifier diode.

On the DC1961A, the LT8309 is biased from the rectified drain voltage node of secondary side synchronous MOSFET, not directly connecting to output voltage. This
configuration allows the synchronous MOSFET to remain conducting at all times, even when output is shorted to ground, so as to provide a very robust short circuit performance.

The Performance Summary table summarizes the performance of the demo board at room temperature. For thermally critical applications, proper amount of air flow can help to reduce power components' temperature rise, therefore greatly improving circuit reliability.

The LT8309 data sheet gives a complete description of the part, operation and application information. The data sheet must be read in conjunction with this quick start guide for demo circuit 1961A.

Design files for this circuit board are available at http://www.linear.com/demo
$\overline{\mathbf{\Sigma}}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMADCE SUMMARY Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage		36	48	72	V
Output Voltage	$\mathrm{V}_{\text {IN }}=36 \mathrm{~V}$ to 72 V , $\mathrm{I}_{\text {OUT }}=0.15 \mathrm{~A}$ to 5 A	11.4	12	12.6	V
Maximum Output Current		5			A
Output Voltage Ripple (Peak to Peak)	$\mathrm{V}_{\text {IN }}=36 \mathrm{~V}$ to 72 V , $\mathrm{I}_{\text {OUT }}=5 \mathrm{~A}(20 \mathrm{MHz}$ BW)		150		mV
Boundary Mode Switching Frequency	$\mathrm{V}_{\text {IN }}=48 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}$		133		kHz
Minimum Switching Frequency	$\mathrm{I}_{\text {Out }}=0 \mathrm{~mA}$		42		kHz
Efficiency	$\mathrm{V}_{\text {IN }}=36 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}$		91		\%
	$\mathrm{V}_{\text {IN }}=48 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}$		91.5		\%
	$\mathrm{V}_{\text {IN }}=72 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}$		91.5		\%

DEMO MANUAL DC1961A

PUICK START PROCEDURE

Demonstration circuit 1961A is easy to set up to evaluate the performance of the LT8309. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

1. With power off, connect the input power supply to the board through $\mathrm{V}_{\text {IN }}$ and GND terminals. Connect the load to the terminals $\mathrm{V}_{\text {OUT }^{+}}$and $\mathrm{V}_{\text {OUT }}{ }^{-}$on the board.
2. Turn on the power at the input.

NOTE: Make sure that the input voltage does not exceed 72 V . To operate the board with higher input/output voltage, input capacitor, output capacitor and MOSFETs with higher voltage ratings are needed.
3. Check for the proper output voltages. The output should be regulated at $12 \mathrm{~V}(\pm 5 \%)$.
NOTE: The LT3748 requires a minimum load to maintain good output voltage regulation. On the DC1961A, in order to avoid pre-loading, a Zener diode is placed between its $\mathrm{V}_{\text {OUT }}{ }^{+}$and $\mathrm{V}_{\text {OUT }}{ }^{-}$to serve as a minimum load.
4. Once the proper output voltage is established, adjust the input voltage and load current within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters.
NOTE: When measuring the input or output voltage ripples, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the $\mathrm{V}_{\text {IN }}$ and GND, or $\mathrm{V}_{\text {OUT }^{+}}$and $\mathrm{V}_{\text {OUT }}{ }^{-}$terminals. See Figure 2 for proper scope probe technique.

Figure 1. Proper Measurement Equipment Setup

Figure 2. Proper Scope Probe Placement for Measuring Input/Output Ripple

PGRFORMANCE

Figure 3. Typical Efficiency Curve

Figure 4. Typical Regulation Curve

DEMO MANUAL DC1961A

PGRFORMANCE

Figure 5. Synchronous MOSFET Drain and Gate Voltage $\left(\mathrm{V}_{\mathrm{IN}}=48 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=5 \mathrm{~A}\right)$

Figure 6. Output Short Circuit Waveforms ($\mathrm{V}_{\mathrm{IN}}=\mathbf{4 8 V}$)

Figure 7. Thermal Picture, $48 V_{\text {IN }}$ and $5 A_{0 U T}\left(T_{A}=25^{\circ} \mathrm{C}\right.$, Air Flow 200LFM) Synchronous MOSFET, $52.5^{\circ} \mathrm{C}$; Primary MOSFET, $46.7^{\circ} \mathrm{C}$; Transformer, $74.1^{\circ} \mathrm{C}$

DEMO MANUAL DC1961A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	C1	CAP., ALUM, 47 ${ }^{\text {FF, }} 80 \mathrm{~V}, 20 \%$, SMD	Nippon Chemi-Con, EMZA800ADA470MJA0G
2	3	C2, C3, C4	Cap., X7S, 4.7 $7 \mathrm{~F}, 100 \mathrm{~V}, 20 \%, 1210$	TDK, C3225X7S2A475MT
3	1	C5	Cap., U2J, 120pF, 250V, 5\%, 0805	Murata, GRM21A7U2E121JW31D
4	1	C6	Cap., X7S, 1 1 F, 100V, 10\%, 0805	TDK, C2012X7S2A105K
5	6	C7-C12	Cap., X5R, 47 $\mu \mathrm{F}, 16 \mathrm{~V}, 10 \%$, 1210	Murata, GRM32ER61C476KE15L
6	1	C13	Cap., X5R, 4.7 F , 16V, 20\%, 0805	TDK, C2012X5R1C475M
7	1	C14	Cap., X7R, 0.22 $\mathrm{F}, 25 \mathrm{~V}, 10 \%$, 0603	TDK, C1608X7R1E224K
8	1	C15	Cap., NPO, 470pF, 25V, 5\%, 0603	AVX, 06033A471JAT2A
9	1	C16	Cap., X7R, 1 1 F, 100V, 20\%, 1206	TDK, C3216X7R2A105M
10	1	C17	Cap., X5R, 4.7 ${ }^{\text {F, 25V, 10\%, } 0805}$	TDK, C2012X5R1E475K
11	1	C18	Cap., NPO, 47pF, 25V, 5\%, 0603	AVX, 06033A470JAT2A
12	1	C19	Cap., X7R, 0.033 ${ }^{\text {F, }} 25 \mathrm{~V}, 10 \%$, 0603	AVX, 06033C333KAT2A
13	1	C20	Cap., X7R, 4700pF, 250V, 10\%, 1812	Murata, GA343DR7GD472KW01L
14	1	D1	Diode, TVS UNI-DIR 85V, 600W, SMB	Diodes Inc., SMBJ85A-13-F
15	1	D2	Diode, 1A/200V, SOD-123	Central Semi., CMMR1U-02 TR
16	1	D3	Diode Zener, 13V SMA	Central Semi., CMZ5928B TR
17	2	D4, D5	DIODE, SWITCHING 150V, 0.2A, SOD123	Diodes Inc., BAV20W-7-F
18	1	D6	Zener Diode, 36V, SOD-123	Central Semi., CMHZ5258B TR
19	1	L1	Inductor, 22 $\mathrm{H}^{\text {H, XAL6060 }}$	Coilcraft, XAL6060-223MEC
20	1	L2	Inductor, $1 \mu \mathrm{H}, \mathrm{XAL6030}$	Coilcraft, XAL6030-102MEB
21	1	Q1	MOSFET, N-CH, 80V, 100A, TDSON-8	Infineon, BSC047N08NS3 G
22	1	Q2	MOSFET, N-CH, 200V, 36A, TDSON-8	Infineon, BSC320N20NS3 G
23	1	R1	Res., Chip 100, 0.50W, 5\%, 1210	Vishay, CRCW1210100RJNEA
24	1	R3	Res., Chip 1.2M, 0.1W, 5\%, 0603	Vishay, CRCW06031M20JNEA
25	1	R4	Res., Chip 51k 0.1W 5\% 0603	Vishay, CRCW060351K0JNEA
26	1	R5	Res., Chip 68, 1/8W, 5\%, 0805	Vishay, CRCW080568R0JNEA
27	2	R6, R8	Res/Jumper, Chip 0л, 0.25W, 5A, 0603	Vishay, CRCW06030000ZOEA
28	1	R7	Res., Chip 160k, 1/8W, 1\%, 0805	Vishay, CRCW0805160KFKEA
29	1	R9	Res., Chip $3 \Omega, 1 / 8 \mathrm{~W}, 5 \%, 0805$	Vishay, CRCW08053R00JNEA
30	1	R10	Res., Chip 60.4k, 0.1W, 1\%, 0603	Vishay, CRCW060360K4FKEA
31	1	R11	Res., Chip 3, 1/10W, 5\%, 0603	Vishay, CRCW06033R00JNEA
32	1	R12	Res., Chip 7.50k, 0.1W, 1\%, 0603	Vishay, CRCW06037K50FKEA
33	1	R13	Sense Res., RL Vert. 0.010, 1W, 1\%, 0815	SUSUMU, RL3720WT-R010-F
34	1	R14	Res., Chip 6.04k, 0.1W, 1\%, 0603	Vishay, CRCW06036K04FKEA
35	1	R15	Res., Chip 2.37k, 0.25W, 1\%, 1206	Vishay, CRCW12062K37FKEA
36	1	T1	Transformer, $\pm 5 \%, 20.5 \mu \mathrm{H}$, EFD20 Platform	Pulse Engrng., PA1736NLT
37	1	U1	I.C., Rectifier Driver, TSOT23-S5	Linear Tech. Corp. LT8309ES5\#PBF
38	1	U2	I.C., No-Opto Flyback Converter	Linear Tech. Corp. LT3748EMS\#PBF
39	1		FAB, PRINTED CIRCUIT BOARD Rev 2	DEMO CIRCUIT \#1961A

DEMO MANUAL DC1961A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Additional Demo Board Circuit Components	Cap., 0805			
1	0	C21	Res., 1206	Mill Max, 2501-2-00-80-00-00-07-0
2	0	R2		

SCHEMATIC DIAGRAM

DEMO MANUAL DC1961A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

