DESCRIPTIOn

Demonstration circuit 1988A is a 2kV AC (3kVDC) isolated flyback μ Module ${ }^{\circledR}$ DC/DC converter with LDO post regulator featuring the LTM ${ }^{\oplus} 8058$. The demo circuit is designed for a 6 V flyback output and a 5 V post regulator output from a 4.5 V to 30 V input. The current capability of the 6 V flyback output varies with input voltage from about 100 mA at $4.5 \mathrm{~V}_{\text {IN }}$ to about 320 mA at $30 \mathrm{~V}_{\text {IN }}$. Figure 1 shows the typical maximum output current on $\mathrm{V}_{\text {OUT1 }}$ when $\mathrm{V}_{\text {OUT2 }}$ is not loaded. $V_{\text {OUT2 }}$ is the LDO post regulator from $V_{\text {OUT1 }}$. The current capability of $\mathrm{V}_{\text {OUT2 }}$ is limited by either the current capability of $\mathrm{V}_{\text {OUT1 }}$ minus $\mathrm{V}_{\text {OUT1 }}$ loading or the 300 mA current limit on the LDO post regulator itself. R1 provides the necessary minimum load current to keep the $\mathrm{V}_{\text {OUT1 }}$ in regulation throughout the entire input voltage range. Please see the typical performance characteristic curves
in the LTM8058 data sheet to determine the minimum load current for other input/output configurations.
The two-stage converter provides an isolated flyback output as well as a low noise LDO output. Figure 2 shows the output noise spectrum on $\mathrm{V}_{\text {OUT1 }}$ and Figure 3 shows the output noise spectrum on $V_{\text {OUT2 }}$.
The LTM8058 data sheet gives a complete description of the device, operation and application information. The data sheet must be read in conjunction with this quick start guide for demo circuit 1988A.
Design files for this circuit board are available at http://www.linear.com/demo/DC1988A
$\overline{\boldsymbol{\Sigma}}$, LT, LTC, LTM, μ Module, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	VALUE
Minimum Input Voltage		4.5 V
Maximum Input Voltage		30 V
Output Voltage $\mathrm{V}_{\text {OUT1 }}$	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}$ to 30 V	$6 \mathrm{~V} \pm 5 \%$
Output Voltage $\mathrm{V}_{\text {OUT2 }}$	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}$ to 30 V	$5.0 \mathrm{~V} \pm 3 \%$
Voltage Ripple $\mathrm{V}_{\text {OUT1 }}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=0 \mathrm{~mA}, \mathrm{I}_{\text {OUT2 }}=100 \mathrm{~mA}$	10 mV
Voltage Ripple $\mathrm{V}_{\text {OUT2 }}$	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=0 \mathrm{~mA}, \mathrm{I}_{\text {OUT2 }}=100 \mathrm{~mA}$	5 mV

BOARD PHOTO

DEMO MANUAL DC1988A

DUICK START PROCEDURE

Demo circuit 1988A is easy to set up to evaluate the performance of the LTM8058. Refer to Figure 4 for proper measurement equipment setup and follow the procedure below:

NOTE. When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the $\mathrm{V}_{\text {IN }}$ or $V_{\text {OUT }}$ and GND terminals. See Figure 5 for proper scope probe technique.

1. With power off, connect the input power supply to V_{IN} and GND.
2. Turn on the power at the input.

NOTE. Make sure that the input voltage does not exceed 30V.
3. Check for the proper output voltages. (For V ${ }_{\text {OUT1 }}$, check the voltage between $\mathrm{V}_{\text {OUT1 }}$ and $\mathrm{V}_{\text {OUT }}{ }^{-}$. For $\mathrm{V}_{\text {OUT2 }}$, check the voltage between $\mathrm{V}_{\text {OUT2 }}$ and $\mathrm{V}_{\text {OUT }}{ }^{-}$.)

NOTE. If there is no output, temporarily disconnect the load to make sure that the load is not set too high.
4. Once the proper output voltages are established, adjust the load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters.

Figure 1. $\mathrm{V}_{\text {OUT1 }}$ Typical Maximum Output Current vs $V_{\text {IN }}$ with $V_{\text {OUT2 }}$ Unloaded

dc 1988a F02
Figure 2. $\mathrm{V}_{\text {OUT1 }}$ Output Noise Spectrum with $\mathrm{I}_{\mathrm{OUT} 1}$ at 100 mA and V_{IN} at 12 V ($\mathrm{V}_{\text {OUT2 }}$ Has No Extra Load)

dc 1988a F03
Figure 3. $\mathrm{V}_{\text {OUT2 }}$ Output Noise Spectrum with $\mathrm{I}_{\text {OUT2 }}$ at 100 mA and V_{IN} at 12 V ($\mathrm{V}_{\text {OUt1 }}$ Has No Extra Load)

DEMO MANUAL DC1988A

PUICK START PROCEDURE

Figure 4. DC1988A Proper Equipment Setup

Figure 5. Measuring Input or Output Ripple

DEMO MANUAL DC1988A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	C1	CAP., CHIP, X5R, $10 \mu F, 50 \mathrm{~V}, 10 \% 1210$	MÜRATA, GRM32ER71H106KA12L
2	1	C2	CAP., CHIP, X5R, $22 \mu \mathrm{~F}, 16 \mathrm{~V}, 10 \% 1206$	AVX, 1206YD226KAT2A
3	1	C3	CAP., CHIP, X5R, $10 \mu \mathrm{~F}, 16 \mathrm{~V}, 10 \% 1206$	AVX, 1206YD106KAT2A
4	1	C4	CAP., CHIP, X5R, $4.7 \mu \mathrm{~F}, 50 \mathrm{~V}, 20 \% 0805$	TDK, C2012X5R1H475M
5	1	C5	CAP., CHIP, X7R, $0.01 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \% 0603$	AVX, 06033C103kAT2A
6	1	C6	CAP., CHIP, X7R, $0.1 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \% 0603$	AVX, 06033C104KAT2A
7	1	R1	RES., CHIP, 200k, $1 / 4 \mathrm{~W}, 1 \% 1210$	VISHAY, CRCW1210200RFKEA
8	1	R2	RES., CHIP, $200 \mathrm{k}, 1 / 10 \mathrm{~W}, 1 \% 0603$	VISHAY, CRCW0603200KFKEA
9	1	R3	RES., CHIP, $90.9 k, 1 / 10 \mathrm{~W}, 1 \% 0603$	VISHAY, CRCW060390K9FKEA
10	1	R4	RES., CHIP, $162 k, 1 / 10 \mathrm{~W}, 1 \% 0603$	VISHAY, CRCW0603162KFKEA
11	1	R5	RES., CHIP, $5.9 k, 1 / 10 W, 1 \% 0603$	VISHAY, CRCW06035k90FKEA
12	1	U1	IC., LINEAR TECH., LTM8058EY\#PBF	LINEAR TECH., LTM8058EY\#PBF

Additional Demo Board Circuit Components

1	0	C7 (OPT)	CAP., 1808	
2	0	C8, C9 (OPT)	Cap., 1210	
3	2	C10, C11	CAP., CHIP, X7R, 1 $\mu \mathrm{F}, 16 \mathrm{~V}, 10 \% 0603$	AVX, 0603YC105KAT2A
4	0	C12 (OPT)	CAP., 0603	
5	1	CIN1	CAP., TANT., 10 $\mu \mathrm{F}, 35 \mathrm{~V}$ CASE-C	AVX, TAJC106K035RNJ
6	0	L1	OPT.	
7	0	R6	OPT. 0603	

Hardware: For Demo Board Only

1	6	E1-E4, E6, E7	Testpoint, Turret, .094"	Mill-Max, 2501-2-00-80-00-00-07-0
2	2	E5, E8	Testpoint, Turret, .064"	Mill-Max, 2308-2-00-80-00-00-07-0

SCHEMATIC DIAGRAM

DEMO MANUAL DC1988A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

