

DEMO MANUAL DC2002A

LTC3774EUHE

High Efficiency Dual Output Step-Down Converter with Very Low DCR Inductor

DESCRIPTION

Demonstration circuit DC2002A is a dual output synchronous buck converter featuring the LTC3774EUHE. The demo board supplies two rails of 1.5V/30A and 1.2V/30A.

The power stage for each rail consists of a $0.33\mu H\,0.32m\Omega$ DCR inductor with a $11mm \times 11mm$ footprint and a $6mm \times 6mm$ DrMOS driven by the PWM outputs of the LTC3774EUHE at a switching frequency of 400kHz. The inductor, DrMOS and the local ceramic input and output capacitors forms the core converter which occupies a $1.1^{''} \times 1.1^{''}$ area on the top layer. The control circuit is directly underneath on the bottom layer and occupies an area of $0.9^{''} \times 1.1^{''}$. The result is a two sided core converter with a current density of 50A per square inch and a full load efficiency of 91.1% for the 1.5V rail and 90.0% for the 1.2V rail.

Additional features of this demo board include:

- · Remote Sensing for Each Output
- PLLIN and CLKOUT Pins
- PGOOD, RUN and TRK/SS Pins for Each Output
- Optional Resistors to Tie the Two Outputs Together
- Optional Footprint for Hot Swap™ FET on the Input of Each Phase for MOSFET Failure Protection
- Optional Footprint for an LTC4449 Gate Driver and Discrete MOSFETs
- Optional Footprint for a Dual Phase Delta Power Block

Design files for this circuit board are available at http://www.linear.com/demo/DC2002A

CT, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and Hot Swap is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY Specifications are at $T_A = 25^{\circ}C$, No Airflow

PARAMETER	CONDITIONS	VALUE	
Minimum Input Voltage		7V	
Maximum Input Voltage		14V	
Output Voltage V _{OUT1}	I _{OUT1} = 0A TO 30A, V _{IN} = 7V to 14V	1.5V ±2%	
Output Voltage V _{OUT2}	I _{OUT2} = 0A TO 30A, V _{IN} = 7V to 14V	1.2V ±2%	
V _{OUT1} Maximum Output Current, I _{OUT1}	V _{IN} = 7V to 14V, V _{OUT1} = 1.5V	30A	
V _{OUT2} Maximum Output Current, I _{OUT2}	$V_{IN} = 7V \text{ to } 14V, V_{OUT2} = 1.2V$	30A	
Nominal Switching Frequency		400kHz	
Efficiency	V _{OUT1} = 1.5V, I _{OUT1} = 30A, V _{IN} = 12V	91.1% Typical	
See Figures 2 and 3	V _{OUT2} = 1.2V, I _{OUT2} = 30A, V _{IN} = 12V	90.0% Typical	

Demonstration circuit 2002A is easy to set up to evaluate the performance of the LTC3774EUHE. Please refer to Figure 1 for proper measurement equipment setup and follow the procedure below.

1. With power off, connect the input supply, load and meters as shown in Figure 1. Preset the load to 0A and V_{IN} supply to be 0V. For both assemblies, place the jumpers in the following positions:

JP1	RUN1	ON
JP2	RUN2	ON
JP5	MODE	CCM

2. Adjust the input voltage to be between 7V and 14V. V_{OUT1} should be 1.5V $\pm 2\%$.

 V_{OLIT2} should be 1.2V ±2%.

- 3. Next, apply 30A load to each output and re-measure V_{OUT} .
- Once the DC regulation is confirmed, observe the output voltage ripple, load step response, efficiency and other parameters.

Note 1. Use the BNC connectors labeled V_{OUT1} or V_{OUT2} to measure the output voltage ripple.

Note 2. Do not connect load from the V_{0S1}^+ turret to the V_{0S1}^- turret or from the V_{0S2}^+ turret to the V_{0S2}^- turret. This could damage the converter. Only apply load across the stud connectors on the edge of the board.

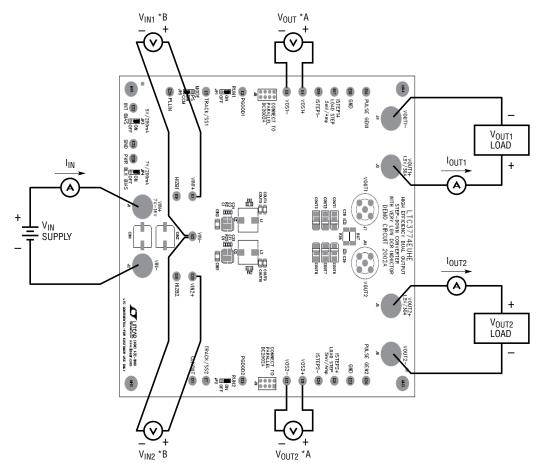
Dynamic Load Circuit (Optional)

Demonstration circuit 2002A provides a simple load step circuit consisting of a MOSFET and sense resistor for each rail. To apply a load step, follow the steps below.

- 1. Pre-set the amplitude of a pulse generator to 0.0V and the duty cycle to 5% or less.
- 2. Connect the scope to the V_{OUT1}/V_{OUT2} BNC connectors for the rail under test with a coax cable. To monitor the load step current, connect the scope probe across the ISTEP± turrets for that rail.

- Connect the output of the pulse generator to the PULSE GEN turret for the rail under test and connect the return to the adjacent GND turret.
- 4. With the converter running, slowly increase the amplitude of the pulse generator output to provide the desired load step pulse height. The scaling for the load step signal is 5mV/Amp.

Single Output/Dual Phase Operation


A single output/dual phase converter may be preferred for higher output current applications. The optional components required to tie the phases together are found on the lower left of the 1st sheet. To tie the two outputs together, make the following modifications:

- 1. Tie the two V_{OUT} shapes together with a piece of copper or a $0m\Omega$ jumper at R47 and R36. One part to consider is Tepro RN5326.
- 2. Tie V_{OSNS1} to V_{OSNS2} by stuffing a 0Ω resistor at R53 and tie V_{OS1}^- to V_{OS2}^- by stuffing a 0Ω resistor at R92.
- 3. Tie ITH1 to ITH2 by stuffing a 0Ω resistor at R68.
- 4. Tie RUN1 to RUN2 by stuffing a 0Ω resistor at R54.
- 5. Tie TK/SS1 to TK/SS2 by stuffing a 0Ω resistor at R48.

Paralleling Boards

Up to 6 DC2002A demo boards can be paralleled to produce a single output, 12 phase converter. To connect two or more DC2002A boards together, first tie the two phases together as described in the Single Output/Dual Phase Operation section. Next, place the boards side by side such that header J8 of one board mates with socket J9 of the other. This will connect the common control signals together which are the V_{OSNS} , V_{OS}^- , ITH, RUN and TK/SS signals. It will also tie the CLKOUT signal of one phase to the PLLIN input of the other phase. Next, tie the V_{OUT} , V_{IN} and GND of the boards together using the exposed copper on the edges of the board. Figure 6 shows how to tie 2 boards together for a single output, 4 phase converter.

*A MONITOR THE OUTPUT VOLTAGE ACROSS EITHER COUT4 OR COUT9 FOR ACCURATE EFFICIENCY MEASUREMENTS. *B MONITOR THE VOLTAGE AT VIN1 WHEN MEASURING THE EFFICIENCY OF PHASE 1 AND VIN2 WHEN MEASURING THE EFFICIENCY OF PHASE 2.

Figure 1. Proper Measurement Equipment Setup

1.5V/30A Rail, CCM, $f_{SW} = 400kHz$

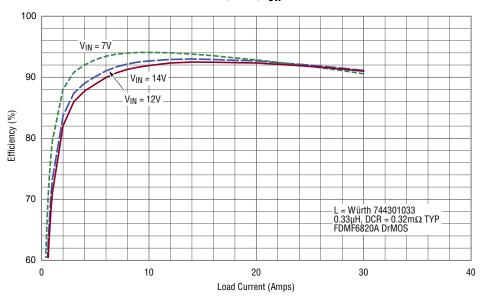


Figure 2. Efficiency Curves for the 1.5V Rail at V_{IN} = 12V, 14V and 7V in CCM.

1.2V/30A Rail, CCM, f_{SW} = 400kHz

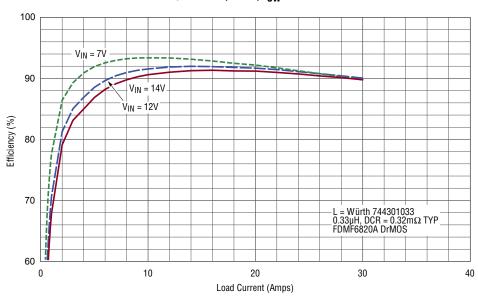


Figure 3. Efficiency Curves for the 1.2V Rail at V_{IN} = 12V, 14V and 7V in CCM.

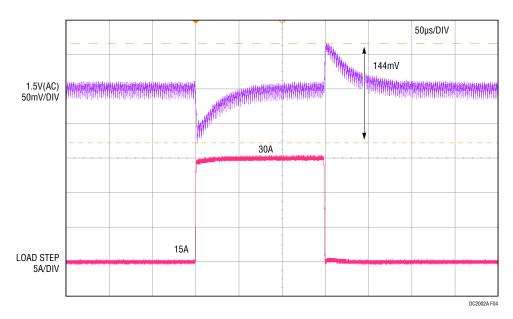


Figure 4. 50% to 100% to 50% Load Step Response of the 1.5V Rail. C_{OUT} = 3× Sanyo 2R5TPE330M9 || 2× 100 μ F X5R 1206, L = Würth 744301033 (0.33 μ H), f_{SW} = 400kHz.

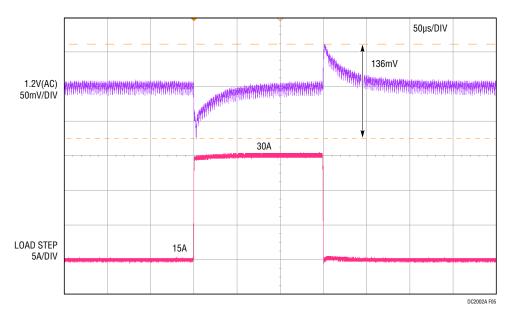
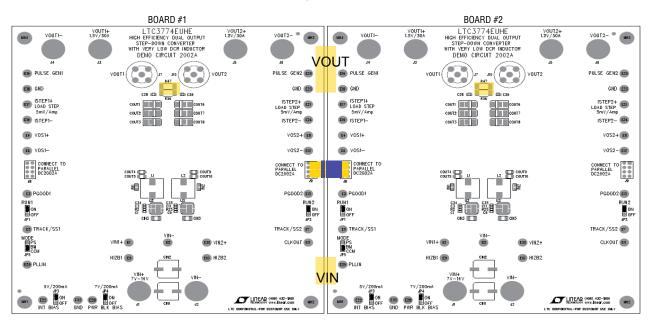



Figure 5. 50% to 100% to 50% Load Step Response of the 1.2V Rail. C_{OUT} = 3× Sanyo 2R5TPE330M9 || 2× 100 μ F X5R 1206, L = Würth 744301033 (0.33 μ H), f_{SW} = 400kHz.

TOP LAYER

BOTTOM LAYER

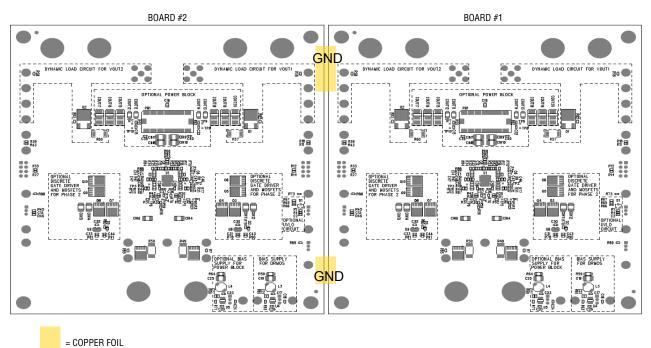
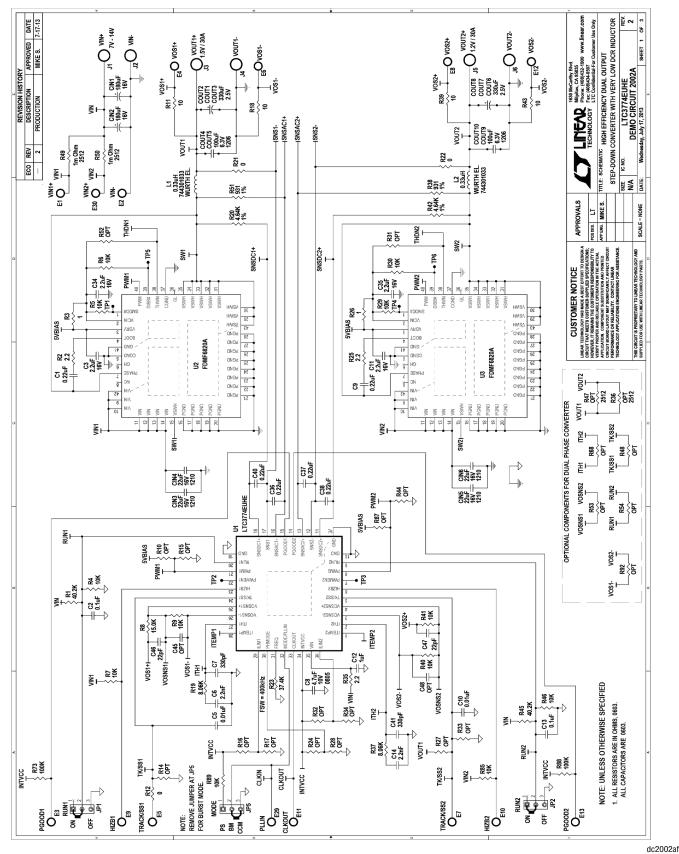


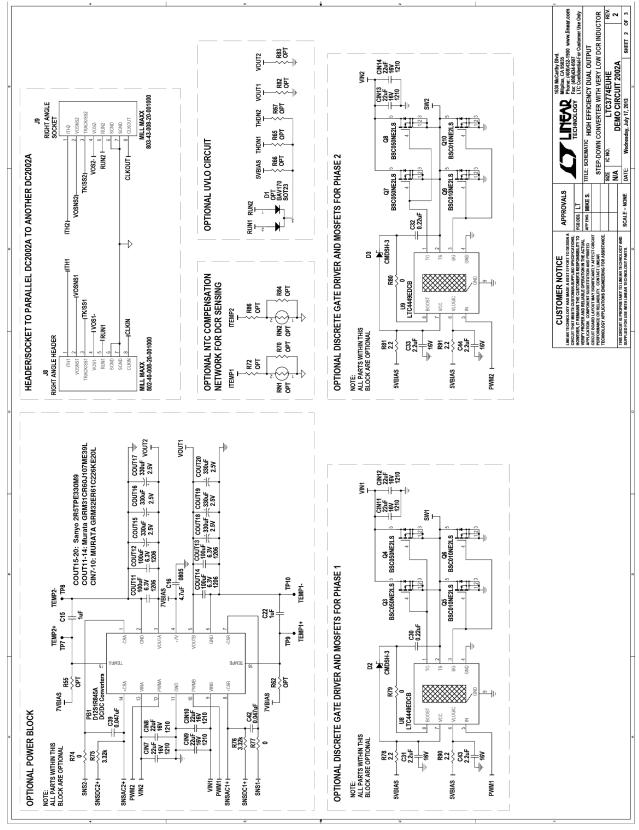
Figure 6. How to Parallel Two Boards for a Single Output, 4 Phase Converter

PARTS LIST

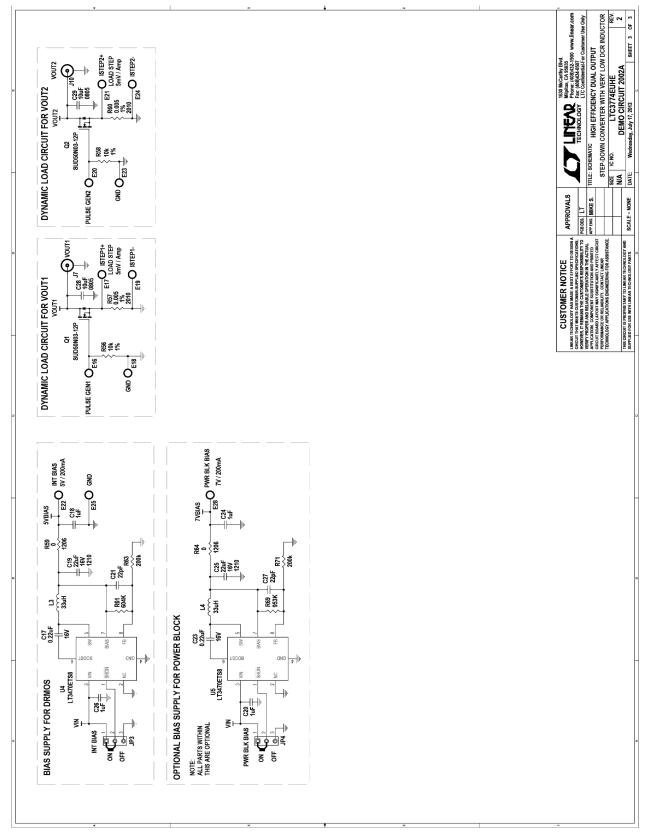
ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Require	d Circuit	Components		
1	2	C _{IN1} , C _{IN2}	CAP, 180µF, 20%, 16V, OSCON	SANYO, 16SVP180MX
2	4	C _{IN3} , C _{IN4} , C _{IN5} , C _{IN6}	CAP, 22µF, 20%, 16V, X5R 1210	MURATA, GRM32ER61C226KE20L
3	6	C _{OUT1} -C _{OUT3} , C _{OUT6} -C _{OUT8}	CAP, 330µF, 20%, 2.5V, 7343	SANYO, 2R5TPE330M9
4	4	C _{OUT4} , C _{OUT5} , C _{OUT9} , C _{OUT10}	CAP, 100µF, 20%, 6.3V, X5R 1206	MURATA, GRM31CR60J107ME39L
5	6	C1, C9, C36, C37, C38, C40	CAP, 0.22µF, 10%, 25V, X7R 0603	AVX, 06033C224KAT2A
6	2	C2, C13	CAP, 0.1µF, 10%, 25V, X7R 0603	AVX, 06033C104KAT2A
7	4	C3, C11, C34, C35	CAP, 2.2µF, 10%, 16V, X7R 0603	MURATA, GRM188R61C225KE15D
8	2	C5, C10	CAP, 0.01µF, 10%, 25V, X7R 0603	AVX, 06033C103KAT2A
9	2	C6, C14	CAP, 2200pF, 5%, 25V, X7R 0603	AVX 06033C222JAT2A
10	2	C7, C41	CAP, 330pF, 10%, 50V, NPO 0603	AVX 06035A331KAT
11	1	C8	CAP, 4.7µF, 10%, 16V, X7R 0805	AVX, 0805YC475KAT2A
12	1	C12	CAP, 1µF, 20%, 25V, X5R 0603	AVX, 06033D105MAT2A
13	2	C46, C47	CAP, 22pF, 10%, 25V, NPO 0603	AVX, 06033A220KAT2A
14	2	C28, C29	CAP, 10µF, 20%, 6.3V, X5R 0805	AVX, 08056D106MAT2A
15	2	L1, L2	IND., 0.33μH, 0.325mΩ, DCR 20%	WÜRTH, 744301033
16	2	R1, R45	RES, 40.2k, 1%, 1/10W, 0603	VISHAY, CRCW060340K2FKEA
17	3	R2, R25, R35	RES, 2.2Ω, 1%, 1/10W, 0603	VISHAY, CRCW06032R20FKEA
18	2	R3, R26	RES, 1Ω, 1%, 1/10W, 0603	VISHAY, CRCW06031R00FKEA
19	12	R4-R7, R9, R29, R30, R40, R41, R46, R85, R89	RES, 10k, 1%, 1/10W, 0603	VISHAY, CRCW060310K0FKEA
20	1	R8	RES, 15k, 1%, 1/10W, 0603	VISHAY, CRCW060315K0FKEA
21	4	R11, R18, R39, R43	RES, 10Ω, 1%, 1/10W, 0603	VISHAY, CRCW060310R0FKEA
22	3	R12, R21, R22	RES, 0Ω, JUMPER 0603	VISHAY, CRCW06030000Z0EA
23	2	R20, R42	RES, 4.64k, 1%, 1/10W, 0603	VISHAY, CRCW06034K64FKEA
24	1	R23	RES, 37.4k, 1%, 1/10W, 0603	VISHAY, CRCW060337K4FKEA
25	2	R38, R51	RES, 931Ω, 1%, 1/10W, 0603	VISHAY, CRCW0603931RFKEA
26	2	R49, R50	RES, 0.001Ω, 2512, 5%	PANASONIC ERJM1WTJMOU
27	2	R73, R88	RES, 100K 1% 1/10W 0603	VISHAY, CRCW0603100KFKEA
28	1	U1	LTC3774EUHE	LINEAR TECH., LTC3774EUHE#PBF
29	2	U2, U3	MOSFET, DrMOS DC/DC 3.3V PWM	FAIRCHILD, FDMF6820A
30	2	R19, R37	RES, 8.06k, 1%, 1/16W, 0603	VISHAY, CRCW06038K06FKEA
5V BIAS	(for DrN	IOS)		
1	1	R59	RES, 0Ω, JUMPER 1206	VISHAY, CRCW12060000Z0EA
2	1	U4	I.C., BUCK REGULATOR LT3470ETS8	LINEAR TECH., LT3470ETS8#PBF
3	1	C17	CAP, 0.22µF, 10%, 25V, X7R 0603	AVX, 06033C224KAT2A
4	2	C18, C26	CAP, 1µF, 20%, 25V, X5R 0603	AVX, 06033D105MAT2A
5	1	L3	IND., 33μH, -53DLC	TOKO, A914BYW-330M=P3
6	1	C19	CAP, 22µF, 20%, 16V, X5R 1210	MURATA, GRM32ER61C226KE20L
7	1	C21	CAP, 22pF, 10%, 25V, NPO 0603	AVX, 06033A220KAT2A
8	1	R61	RES, 604k, 1%, 1/10W, 0603	VISHAY, CRCW0603604KFKEA
9	1	R63	RES, 200k, 1%, 1/10W, 0603	VISHAY, CRCW0603200KFKEA



DEMO MANUAL DC2002A


PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Dynamic	Load C	ircuits		
1	2	R56, R58	RES, 10k, 1%, 1/10W, 0603	VISHAY, CRCW060310K0FKEA
2	2	Q1, Q2	MOSFET, N-Channel 30-V	VISHAY, SUD50N03-12P-E3
3	2	R57, R60	RES 0.005Ω, 1%, 0.5W, 2010	VISHAY, WSL20105L000FEA
Addition	al Comp	onents		
1	0	C _{IN7} -C _{IN12} , C _{IN13} , C _{IN14} , C25	CAP, 1210	OPT OPT
2	0	C _{OUT15} -C _{OUT20} (OPT)	CAP, 7343	OPT
3	0	C _{OUT11} -C _{OUT14}	CAP, 1206	OPT
4	0	C16	CAP, 0805	OPT
5	0	C15, C20, C22-C24, C27, C30-C33, C39, C42, C43, C44-C48	CAP, 0603	OPT
6	0	D1	DIODE SOT23	OPT
7	0	D2, D3	DIODE SOD-323	OPT OPT
8	0	L4	IND, -53DLC	OPT OPT
9	0	PB1	POWER BLOCK, D12S1R845A	OPT OPT
10	0	Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10	MOSFET, PG-TDSON-8	OPT OPT
11	0	RN1, RN2	RES, NTC, 0805	OPT
12	0	R10, R14, R15, R24, R27, R28, R31, R33, R44, R48, R52-R55, R62, R65-R72, R74-R84, R86, R87, R90, R91, R92	RES, 0603	ОРТ
13	0	R16, R32, R17, R34	RES, 0603	OPT
14	0	R36, R47	RES, 2512	OPT
15	0	R64	RES, 1206	OPT
16	0	U5	OPT, BUCK REGULATOR LT3470ETS8	OPT
17	0	U8, U9	GATE DRIVER, LTC4449EDCB	OPT
18	0	E28	OPT, TESTPOINT, TURRET, .095"	OPT
19	0	JP4	HEADER, 3 PIN, 0.079 SINGLE ROW	OPT
Hardwar	e			
1	25	E1-E13, E16-E25, E29, E30	TESTPOINT, TURRET, .095"	MILL MAX, 2501-2-00-80-00-00-07-0
2	4	JP1, JP2, JP3, JP5	HEADER, 3 PIN 0.079 SINGLE ROW	SULLINS, NRPN031PAEN-RC
3	4	XJP1, XJP2, XJP3, XJP5	SHUNT, .079" CENTER	SAMTEC, 2SN-BK-G
4	6	J1, J2, J3, J4, J5, J6	STUD, TEST PIN	PEM, KFH-032-10
5	12	(J1, J2, J3, J4, J5, J6)x2	NUT, BRASS PL #10-32	ANY, 10-32M/S BR PL
6	6	J1, J2, J3, J4, J5, J6	RING, LUG #10	KEYSTONE, 8205
7	6	J1, J2, J3, J4, J5, J6	WASHER, TIN PLATED BRASS	ANY, #10EXT BZ TN
8	2	J7, J10	CON, BNC, 5 PINS	CONNEX, 112404, 7 Trays
9	1	J8	Header, Dbl Row, RT Angle, 2 × 4, 8 Pin	MILL-MAX, 802-10-008-20-001000
10	1	J9	Socket, Dbl Row, RT Angle, 2 × 4, 8 Pin	MILL-MAX, 803-43-008-20-001000


SCHEMATIC DIAGRAM

SCHEMATIC DIAGRAM

SCHEMATIC DIAGRAM

LINEAR TECHNOLOGY

DEMO MANUAL DC2002A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following **AS IS** conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. **Common sense is encouraged**.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP1300.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM
BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM

NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ