

DEMO MANUAL DC2041A

LTC3255EMSE Wide V_{IN} Range Fault Protected 50mA Step-Down Charge Pump

DESCRIPTION

Demonstration circuit 2041A is a switched-capacitor step-down power supply featuring the LTC®3255. The LTC3255 has the ability to step down voltage 2:1 to efficiently regulate output voltages less than half the V_{IN} voltage reducing the input current needed. As V_{IN} reduces below twice V_{OUT}, the LTC3255 will automatically switch to 1:1 mode.

The LTC3255 also has an integrated shunt regulator allowing it to provide a regulated output from a 4mA to 20mA current loop. The LTC3255 is a robust device that can survive reversepolarity input supplies with current limit and overtemperature protection.

Refer to the LTC3255 data sheet for more details on the electrical and timing specifications.

Design files for this circuit board are available at http://www.linear.com/demo

𝕶, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY Specifications are at $T_A = 25^{\circ}C$

PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
Input Supply Range		4		48	V
V _{OUT}		2.4		12.5	V
I _{OUT}	Shunt Jumper = OFF (SHUNT = GND) Shunt Jumper = ON (SHUNT = BIAS) I _{IN} = 4mA	50 7.4	7.8		mA mA

7.4mA DC Supply from 4mA to 20mA Current Loop

Available Output Current vs Input Current

QUICK START PROCEDURE

The DC2041 is easy to set up to evaluate the performance of the LTC3255 with the shunt disabled. Refer to Figure 1 for proper measurement equipment setup with the shunt disabled and follow the evaluation procedure below. To evaluate the LTC3255 with the shunt enabled, go to the SHUNT ENABLED section.

NOTE. When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the V_{IN} or V_{OUT} and GND terminals. See Figure 2 for proper scope probe technique.

- 1. Set the EN jumper, JP1, on the DC2041 board to the ON position.
- 2. Set the SHUNT jumper, JP3, to the OFF position.

3. Set the V_{OUT} jumper, JP2, to the desired output voltage.

NOTE. Do not set the V_{OUT} jumper to the OPT setting unless the appropriate resistor is installed in R7. The V_{OUT} jumper OPT position is to allow an alternate V_{OUT} setting. This can be accomplished by adding a resistor to R7 to set the output to a desired voltage. Refer to the LTC3255 data sheet to calculate the appropriate value for R7.

- 4. With power off, connect a 0V to 48V, 100mA power supply to V_{IN} and GND with a voltmeter as shown in Figure 1.
- 5. Turn on the $V_{\rm IN}$ input power supply and increase the supply until the $V_{\rm OUT}$ voltage is in regulation and the PGOOD voltage is pulled to $V_{\rm OUT}.$
- NOTE. Make sure that the input voltages do not exceed 60V.
- 6. With V_{IN} at least 1V above V_{OUT} , increase the load on V_{OUT} from 0mA to 50mA and observe the input current. The output ripple may also be observed using an oscilloscope with the probe connected as shown in Figure 2.
- 7. With a 50mA load on $V_{OUT},$ increase V_{IN} until the current on V_{IN} drops to approximately $\frac{1}{2}$ the V_{OUT} current.
- 8. Refer to the LTC3255 data sheet for more details on how the LTC3255 operates.
- 9. When done, turn off all loads and power supplies.

QUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Setup with Shunt Disabled

Figure 2. Measuring Input or Output Ripple

SHUNT ENABLED

The DC2041 is easy to set up to evaluate the performance of the LTC3255 with the shunt enabled. Refer to Figure 3 for proper measurement equipment setup of the LTC3255 with the shunt enabled and follow the evaluation procedure.

NOTE. When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the V_{IN} or V_{OUT} and GND terminals. See Figure 2× for proper scope probe technique.

- 1. Set the EN jumper, JP1, on the DC2041 board to the ON position.
- 2. Set the SHUNT jumper, JP3, to the ON position.
- 3. Set the V_{OUT} jumper, JP2, to the desired output voltage.

NOTE. Do not set the V_{OUT} jumper to the OPT setting unless the appropriate resistor is installed in R7. The V_{OUT} jumper OPT position is to allow an alternate V_{OUT} setting. This can be accomplished by adding a resistor to R7 to set the output to a desired voltage. Refer to the LTC3255 data sheet to calculate the appropriate value for R7.

4. With power off, connect a 0V to 48V, 100mA power supply to a controlled current source, a 250Ω ¹/₄ Watt resistor, V_{IN} and GND with a voltmeter and ammeter as shown in Figure 3.

5. Turn on the V_{IN} input power supply, PS1, and increase the supply above twice the V_{OUT} voltage setting plus 9V. (VPS1 > $2V_{OUT} + 2V + VCS1 + VRS1 + Vammeter$). For example, if V_{OUT} is set to 3.3V, set PS1 above 3.3V • 2 + 9V or 15.6V.

NOTE. Make sure that the input voltages do not exceed 60V.

- 6. Turn on and set the input current source to 4mA. Observe the voltage across the V_{IN} and GND terminals and across the V_{OUT} and GND terminals. The output ripple may also be observed using an oscilloscope with the probe connected as shown in Figure 2.
- 7. Increase the load on V_{OUT} to about 7.4mA and observe the input current, input voltage and output voltage.
- 8. Increase the input current source from 4mA to 20mA. Observe the voltage across the V_{IN} and GND terminals and across the V_{OUT} and GND terminals. Adjust PS1 as per equation described in step 5 if needed.
- 9. Increase the load on V_{OUT} to about 38mA and observe the output voltage. Observe the input current and input voltage as the load on V_{OUT} is changed.
- 10. Refer to the LTC3255 data sheet for more details on how the LTC3255 operates.
- 11. When done, turn off all loads and power supplies.

SHUNT ENABLED

Figure 3. Proper Measurement Equipment Setup with Shunt Enabled

DEMO MANUAL DC2041A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER			
Required Circuit Components							
1	1	C1	CAP CER, 1µF, 25V, X7R 10% 0603	MURATA, GRM188R71E105KA12D			
2	1	C2	CAP CER, 1µF, 100V, X7R 10% 0805	TDK, C2012X7S2A105K			
3	1	C3	CAP CER, 10µF, 25V, 10% X7R 1206	MURATA, GRM31CR71E106KA12L			
4	1	C5	CAP CER, 10pF, 50V, 5% NP0 0402	MURATA, GRM1555C1H100JA01D			
5	1	C7	CAP CER, 0.1µF, 16V, 10%, X7R 0402	MURATA, GRM155R71C104KA88D			
6	1	R3	RES 1.1M, 1/16W, 1%, 0402 SMD	VISHAY, CRCW04021M10FKED			
7	1	R4	RES 383kΩ, 1/16W, 1%, 0402 SMD	VISHAY, CRCW0402383KFKED			
8	1	R5	RES 215kΩ, 1/16W, 1%, 0402 SMD	VISHAY, CRCW0402215KFKED			
9	1	R6	RES 133kΩ, 1/16W, 1%, 0402 SMD	VISHAY, CRCW0402133KFKED			
10	1	R8	RES 220kΩ, 1/16W, 5%, 0402 SMD	VISHAY, CRCW0402220KJNED			
11	2	R12	RES 121kΩ, 1/16W, 1%, 0402 SMD	VISHAY, CRCW0402121KFKED			
12	1	U1	50mA STEP-DOWN CHARGE PUMP	LINEAR TECH., LTC3255EMSE#PBF			
Additional Demo Board Circuit Components							
13	1	C4	CAP CER 2.2µF, 100V, 10%, X7R 1206	MURATA, GRM31CR72A225KA7			
14	0	C6	CAP, 0603 SMD	OPT			
15	0	C8	CAP, 1206 SMD	OPT			
16	1	R1	RES 0.0Ω, 1/8W, 0805 SMD	VISHAY, CRCW08050000Z0EA			
17	2	R2, R10	RES 10kΩ, 1/16W, 5%, 0402 SMD	VISHAY, CRCW040210K0JNED			
18	0	R7	RES, 0402 SMD	OPT			
19	2	R9, R11	RES 10.0M, 1/16W, 5%, 0402 SMD	VISHAY, CRCW040210M0JNED			
20	0	R13, R14, R15	RES, 0805 SMD	ОРТ			
Hardware: For Demo Board Only							
21	4	E1, E2, E3, E4	TP, TURRET, 0.094", PBF	MILL-MAX, 2501-2-00-80-00-00-07-0			
22	4	E5, E6, E7, E8	TURRET, 0.061 DIA	MILL-MAX, 2308-2-00-80-00-00-07-0			
23	2	JP1, JP3	HEADER, 3 PIN, 1 ROW .079CC	SAMTEC, TMM-103-02-L-S			
24	3	JP1-JP3	SHUNT, 2mm	SAMTEC, 2SN-KB-G			
25	1	JP2	HEADER, 2.0mm, 2 × 5	SAMTEC, TMM-105-02-L-D			
26	4	MH1-MH4	STAND-OFF, NYLON 0.375" TALL	EYSTONE, 8832 (SNAP ON)			

SCHEMATIC DIAGRAM

LINEAR

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. dc2041af

DEMO MANUAL DC2041A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:

This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for **ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY** and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.

LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.

Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology 1630 McCarthy Blvd. Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

dc2041at

8

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFLEV MIC5281YMMEEV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ