DESCRIPTION

Demonstration circuit 2062A showcases the LT®4363surge stopper in a 12V, 3A IS0-7637-2 application. Inputs of up to 50VDC and load dumps of up to 100 V are limited to 25 V at the output. The MOSFET is protected against output overloads by current limiting. Sustained overvoltage or overcurrent conditions cause the LT4363 to turn off after a timer delay. The LT4363-1 (DC2062A-A) latches off and is reset by pulling $\overline{S H D N}$ low for at least $100 \mu \mathrm{~s}$. The LT4363-2 (DC2062A-B) automatically retries after a cool down delay; retry is inhibited if OV is higher than 1.275 V .

Danger! High voltage testing should be performed by qualified personnel only. As a safety precaution at least two people should be present during high voltage testing.
$\boldsymbol{\Sigma}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.
 \title{

LT4363-1/LT4363-2
 \title{ \section*{LT4363-1/LT4363-2 12V Systems 12V Systems ISO-7637-2 Surge Stopper}

 ISO-7637-2 Surge Stopper}}

Board Layout

DC2062A is designed to withstand load dump. This high voltage is stood off by RUV4, ROV4, R7, RLED2, Q1, Q4. Maximum input voltage is limited by Q1's 100 V BV DSS rating. The permissible time at 100 V is limited by MOSFET safe operating area (SOA) and R7, which dissipates slightly less than 1.2 W and is capable of doing so for at least 500 ms .

The minimum spacing is limited by 1206 pad spacing where the gap between solder pads is 2 mm , or just under 80 mils. Thus, the spacing between the input plane and all other board traces is maintained at a minimum of 2 mm . As a point of reference, a 2 mm needle gap in air breaks down well above 1 kV .

Design files for this circuit board are available at http://www.linear.com/demo

PGRFORMANCE SUMMARY

Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input supply	Operating	5	12	23.5	V
	DC Survival	50			V
	500ms Transient	100			V
Reverse Input Protection	DC Survival	-30			V
	1ms Transient	-150			V
Output Regulation Voltage		23.5	25	25.4	V
Undervoltage Threshold		4	4.2	4.4	V
Retry Inhibit Threshold		18.2	19.1	20	V
Current Limit		3	3.8	4.6	A

DEMO MANUAL DC2062A

QUICK START PROCEDURE

ISO-7637-2 Compliance

The DC2062A is fully compatible with electrical transients in a 12V IS0-7637-2 system. Compliance testing was performed by a third party company called TUV. Tests were performed at level 4 , which is the most extreme condition an IS0-7637-2 system can face. The compliance report can be found on the sidebar of the LT4363 product landing page.

A summary of the report is shown in Table 1.

Load Dump Ride Through

The DC2062A showcases the ability of the LT4363 to ride through and suppress a 100 V load dump pulse. While the DC2062A can ride through load dump events, several points should be kept in mind. First, the dissipation of several components rises to significant levels during a load dump event. Since this event lasts for approximately 500 ms , these components are dissipating power for an appreciable amount of time. RUV4 dissipates 200 mW , ROV4 dissipates 60 mW , D1 dissipates 3.2 W and R7 dissipates nearly 1.2 W . These components are dissipating power for the duration of the 100 V pulse and have been rated appropriately.
Another consideration is MOSFET SOA. Q1 dissipates an average of 80 W throughout the time it is regulating a load dump pulse. While many modern MOSFETs have advertised power ratings much higher than 80W, these ratings are not indicative of performance in surge stopper applications for the following reasons:

1) The power ratings only apply for operation in triode and when the DUT is mounted on an infinite heat sink. 2) The power capability of a MOSFET reduces significantly when it is operated in saturation with a high V_{DS} across it.

MOSFET manufacturers provide an SOA graph which depicts the voltage and current conditions under which a MOSFET can be expected to operate safely. When selecting MOSFETs for a surge stopper application this graph must always be consulted carefully due to the fact that the points on the graph were tested under the previously discussed conditions.

Reverse Input Protection

The DC2062A features reverse protection circuitry that protects downstream components from reverse transients of up to -150 V . This number is limited by the $\mathrm{BV}_{\mathrm{DSS}}$ of Q2. The reverse protection circuitry also protects against reverse DC voltage of up to -30V.

DC2062A-A and DC2062A-B Options

The DC2062A-A is fitted with the LT4363-1 which latches off after a timer delay in the presence of overvoltage or overcurrent conditions. Once latched off the LT4363-1 may be restarted by pulsing the SHDN pin low for at least $100 \mu \mathrm{~s}$, or by briefly cycling power.
The DC2062A-B is fitted with the LT4363-2 which automatically retries after a cool-down cycle. Retry is inhibited by the OV pin, if the input is greater than 20V. Cool down time is typically 22.8 seconds.

Table 1. TUV ISO-7637 Report Summary

				CLASSIFICATION OF FUNCTIONAL STATUS			
TEST PULSE	LEVEL IV REQUIREMENTS	LEVEL PASSED	\# OF PULSES/ DURATION	NO DEVIATION	$\begin{aligned} & \text { DEVIATION } \\ & \text { WITHIN } \\ & \text { SPECIFICATION } \end{aligned}$	DOES NOT COMPLY	$\begin{gathered} \text { NOT } \\ \text { PERFORMED } \end{gathered}$
1	-100V	-100V	5000 Pulses	- Class A	- Class A	\square	\square
2a	+50V	+50V	5000 Pulses	- Class A	- Class A	\square	\square
2b	+10V	+10V	10 Pulses	- Class A	- Class A	\square	\square
3a	-150V	-150V	1 Hour	- Class A	- Class A	\square	\square
3b	+100V	+100V	1 Hour	- Class A	- Class A	\square	\square
4	-7V	-7V	3 Pulse	- Class A	- Class A	\square	\square
5	+87V	+89V	3 Pulse	- Class A	- Class A	\square	\square

QUICK START PROCEDURE

Operation

The shutdown pin, $\overline{\mathrm{SHDN}}$, is floating so that when power is applied to the input, the LT4363 automatically turns on. The LT4363 protects the load from destruction by regulating the output voltage to a safe level during intervals of input overvoltage. DC2062A is designed to regulate the output at 25 V . If the input voltage is less than 25 V , power passes through directly to the output. The output is sensed by the R1/R2 divider and the FB pin. The GATE pin controls Q1 to regulate the output voltage in the event the input rises above 25 V .
Overcurrent is sensed by RSNS and the SNS and OUT pins of the LT4363. If the load current reaches $50 \mathrm{mV} / 13 \mathrm{~m} \Omega$, the GATE pin will control Q1 to regulate the output current at 3.8 A .

In both overcurrent and overvoltage conditions, current is sourced by the TMR pin into the timer capacitor, CTMR. It charges and upon reaching 1.375 V , causes the LT4363 to turn off the MOSFET. As previously mentioned the LT4363-1 version latches off, while the LT4363-2 version automatically tries to restart the load after a 22.8 second cool-down interval.

The timer interval before the MOSFET turns off is variable, depending on the type and severity of the fault, and ranges from 135 ms to 640 ms . The cool-down time is 22.8 s . For the LT4363-2 version, automatic retry is inhibited by the 0 V pin if the input remains higher than 20 V , as set by the ROV4-ROV6 divider. For the LT4363-1 version, the OV pin becomes a ground pin (GND, Pin 7) and it is shorted to ground by a 0Ω jumper at ROV6. The LT4363-1 version simply latches off in response to a fault. Restart by pulling SHDN low for at least $100 \mu \mathrm{~s}$, or by briefly disconnecting the input supply.

The combined tolerances of the LT4363 and external resistive dividers are approximately 4% for output voltage regulation (FB pin), 5\% for undervoltage (UV pin) and retry inhibit threshold (OV pin), and 21\% for current limit.
A performance summary is shown in a table on the schematic diagram and is silk-screened on the front of the demo board for easy reference.

Test Points

A summary of the test points and their related LT4363 pin is shown in Table 2.

Table 2.

Test Point	LT4363 Pin
INPUT	(Board Input)
DRAIN	(Junction of Drains of Q1 \& Q2)
GATE	GATE
SNS	SNS
OUT	OUT
GND	GND
DGATE	(Q2 Gate)
V CC VCC	

Small Turrets

No connection to any of the small turrets is necessary to make the board operate-the LT4363 defaults to the ON state. If the SHDN turret is left open, the board will turn on when power is applied. Short this turret to ground to turn off the LT4363.
FLT and ENOUT are open-collector outputs. If used, pull up to the output or an output-derived external logic supply. There are no pull-ups included on DC2062A. FLT and ENOUT have 100 V ratings and can sink $100 \mu \mathrm{~A}$ to less than 800 mV . TMR is brought out to a turret for the purpose of monitoring the waveform there. It may also be used to connect external timer capacitors.

Quick Start

Connect a 12 V supply to INPUT, and connect a load to OUTPUT as shown in Figure 1. The circuit will turn on automatically when power is applied, and green LED1 will show that the output is up. LED3 indicates that input power is present. If the input voltage is increased above 25 V , the output will shut off and LED1 will extinguish. The output will remain off until the input is brought below 20 V . Similarly, if the input voltage is decreased to less than 4 V the output will shut off and LED1 will extinguish. It will restart when the input rises above 5 V .

DEMO MANUAL DC2062A

PUICK START PROCEDURE

To test IS0-7637-2 compliance, apply a transient to the input as shown in Figure 2. Use a storage oscilloscope to monitor both the input and the output, and use the

NSG5500 trigger output to trigger the oscilloscope sweep. The expected output to IS07637-2 load dump pulse 5 is shown in Figure 3.

Figure 1: Basic Test Setup

Figure 2: Testing IS0-7637-2 Transients.

DEMO MANUAL DC2062A

PUICK START PROCEDURE

Figure 3: ISO-7637-2 Load Dump Event

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	CG	CAP., X7R, 47nF, 100V, 20\%, 0805	AVX, 08051C473MAT2A
2	1	CL	CAP., ALUM., 33 ${ }^{\text {F, }} 50 \mathrm{~V}, 20 \%$, SMT	SUN ELECT., 50CE33LX
3	1	CSNUB	CAP., X5R, 10nF, 500V, 20\%, 1812	AVX, 18127C103MAT2A
4	1	CTMR1	CAP., X5R, 6.8 F F, 6.3V, 20\%, 0805	TDK C2012X5R0J685M
5	0	CTMR2	CAP., X7R, $4.7 \mu \mathrm{~F}, 100 \mathrm{~V}, 20 \%, 0805$	OPT
6	1	C2	CAP., X7R, 100nF, 100V, 20\%, 0805	AVX, 08051C104MAT2A
7	2	C4,CUV	CAP., X7R, 10nF, 200V, 20\%, 0805	AVX, 08052C103MAT2A
8	5	D2, D3, D4, D5, DLED	DIODE, CURRENT LIMITING, SOD123	DIODES INC, BAV3004W
9	1	D1	DIODE, TVS, 60V, SMA-DIODE	DIODES INC, SMAJ60A-13-F
10	2	D6, D7	DIODE, ZENER 15V, SOD323	DIODES INC, DDZ9702S
11	4	E2, E3, E5, E8	TP, TURRET, .094"	MILL-MAX, 2501-2-00-80-00-00-07-0
12	6	E9, E10, E11, E12, E13, E14	TP, TURRET, .064"	MILL-MAX, 2308-2-00-80-00-00-07-0
13	4	J1, J2, J3, J4	BANANA JACK, NON-INSULATED	KEYSTONE, 575-4
14	2	LED1, LED2	LED, SMT GREEN, LED-ROHM-SML-010	ROHM, SML-010FT

DEMO MANUAL DC2062A

PARTS UST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
15	1	LED3	LED, SMT RED, LED-ROHM-SML-010	ROHM, SML-010VT
16	1	Q1	MOSFET, N-CH,100V, TO-3PN	FAIRCHILD, FQA140N10
17	1	Q2	MOSFET, N-CH,150V, SO8	FAIRCHILD, FDS86240
18	2	Q3, Q5	XTOR, NPN, 40V, SOT23	DIODES INC., MMBT3904-7-F
19	1	Q4	XTOR, NPN, 300V, SOT223	FAIRCHILD, PZTA42
20	1	RG	RES., CHIP, 33 , 1/8W, 5\% 0805	NIC, NRC10J330TRF
21	1	RLED1	RES., CHIP, 3k $1 / 4 \mathrm{~W}, 5 \% 1206$	NIC, NRC12J302TR10F
22	1	RLED2	RES., CHIP, 249k, 1/4W, 1\%, 1206	NIC, NRC12F2493TRF
23	1	RLED3	RES., CHIP, 200, 1/8W, 5\%, 0805	NIC, NRC10J201TRF
24	1	RLED4	RES., CHIP, 3.3k, 1/4W, 5\%, 1206	NIC, NRC12J332TRF
25	2	R2, RUV6	RES., CHIP, 10k, 1/4W, 1\%, 0805	NIC, NRC10F1002TRF
26	1	RSNS	RES., CHIP, SENSE, $0.013 \Omega, 1 / 4 \mathrm{~W}, 5 \%, 1206$	NIC, NCST12JR013JTRF
27	1	RSNUB	RES., CHIP, 100 2 , 1/2W, 5\%, 1210, PULSE PR00F	NIC, NRCP25J101TRF
			ALTERNATE PART NUMBER FOR RSNUB (3/4W PART)	VISHAY, CRCW1210100RJNEAHP
28	1	RUV4	RES., CHIP, 23.2k $2,1 / 4 \mathrm{~W}, 1 \%, 1206$	NIC, NRC12F2322TRF
29	1	R1	RES., CHIP, 182k, 1/8W, 1\%, 0805	NIC, NRC10F1823TRF
30	1	R3	RES., CHIP, 10ת, 1/8W, 5\% 0805	NIC, NRC10J100TRF
31	1	R7	RES., CHIP, 620, 1/4W, 5\%, 1206 PULSE PROOF (FOR PROD ASSY)	VISHAY, CRCW1206620RJNEAIF
32	0	R8	RES., CHIP, 240k, 1/8W, 5\%, 0805	OPT
33	3	R9, R11, R12	RES., CHIP, 240k, 1/4W, 5\%, 1206	NIC, NRC12J244TRF
34	1	R10	RES., CHIP, 10k $\Omega, 1 / 4 \mathrm{~W}, 5 \%, 1206$, PULSE PRO0F	VISHAY, CRCW120610KOJNEAIF
35	4		STANDOFF, NYLON 0.5"	KEYSTONE, 8833 (SNAP ON)
DC2062A-A				
1	0	COV	CAP., 0805	OPT
2	0	ROV4	RES., 1\%, 1206	OPT
3	1	ROV6	RES., CHIP, 0Ω, 0805	VISHAY, CRCW08050000Z0EA
4	1	U1	I.C., LT4363IDE-1, DFN12DE-4X3	LINEAR TECH., LT4363IDE-1
DC2062A-B				
1	1	COV	CAP., X7R, 10nF, 200V 20\%, 0805	AVX, 08052C103MAT2A
2	1	ROV4	RES., CHIP, 140K, 1/4W, 1\%, 1206	NIC, NRC12F1403TRF
3	1	ROV6	RES., CHIP, 10K, 1/4W, 1\%, 0805	NIC, NRC10F1002TRF
4	1	U1	I.C., LT4363IDE-2, DFN12DE-4X3	LINEAR TECH., LT4363IDE-2

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable However, no responsibility is assumed for its use. Linear Technology Corporation makes no representa-

DEMO MANUAL DC2062A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.
This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Other Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
DS100BR410EVK-4/NOPB BK0004 BK0012 SN65MLVD2-3EVM DS80EP100-EVK MAX9684EVKIT\# MAX4952AEVKIT+ ESD-EVM-001 MAX14842EVKIT+ EVAL01-HMC749LC3C 410-320 TPD6F002-Q1EVM TS9002DB DS80PCI800EVK/NOPB 118777HMC722LC3C 118777-HMC723LC3C 118777-HMC678LC3C DC1765A-A 125614-HMC851LC3C TPD1E05U06DPYEVM SN65LVDM31-32BEVM DC2062A-A NB4N855SMEVB LMH6321MR-EVAL/NOPB EVAL01-HMC747LC3C 4537 DK-M3F-1.8-TRK-1.5-S DK-M3-FS-1.8-1.5-M12/16 DK-M3L-1.8-TRK-6.0-S DK-M3-LS-1.8-6 ADALM1000 ADALP2000 EVAL-CN0202-SDPZ EVAL-CN0203-SDPZ EVAL-CN0204-SDPZ EVAL-CN0209-SDPZ EVAL-CN0225-SDPZ EVAL-CN0229-SDPZ EVAL-CN0251-SDPZ EVAL-CN0272-SDPZ EVAL-CN0301-SDPZ EVAL-CN0325-SDPZ EVAL-CN0355-PMDZ EVAL-CN0364-SDPZ EVAL-SDP-CB1Z EVAL-SDP-CS1Z DS1964SEVKIT\# MAX14611EVKIT\# MAX22088EVKIT\# MAX4951AEEVKIT+

