LTM8056 $58 \mathrm{~V}_{\mathrm{IN}}, 48 \mathrm{~V}_{\text {OUt }}$ Buck-Boost μ Module Regulator

DESCRIPTIOn

Demonstration circuit 2154A features the LTM ${ }^{\circledR 8056, ~ a ~}$ buck-boost μ Module ${ }^{\circledR}$ regulator that accepts input voltages lower, higher or the same as the output, but is also highly efficient due to its four-switch architecture. The output for DC2154A is 24 V and the input voltage range is 7 V to 58 V . The maximum output current is 3 A and the switching frequency is 525 kHz .
DC2154A supports the adjustable and controllable features of the LTM8056 including output voltage and current regulation, switching frequency, RUN threshold, soft-start period, synchronization and reverse inductor current inhibit. In most cases, adjustment is made by modifying the appropriate resistor or capacitor component(s). DC2154A provides output current monitoring and a clock output.

Input current monitoring and regulation requires the installation of a current sense resistor. The SVIN input for controller power can be made a diode-OR of power $V_{\text {IN }}$ and the output voltage to extend the operating range of power $\mathrm{V}_{\text {IN }}$ to lower voltages. There are places to mount optional components that add an LC input filter and also a unity gain buffer to operate multiple DC2154As in parallel.
The LTM8056 data sheet must be read in conjunction with this demo manual to properly use or modify DC2154A.
Design files for this circuit board are available at http://www.linear.com/demo/DC2154A

[^0]
PGRFORMANCE SUMMARY

Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX
Minimum Input Voltage, $\mathrm{V}_{\text {IN }}$				7V
Maximum Input Voltage, $\mathrm{V}_{\text {IN }}$		58 V		
Maximum Output Current, IOUT	$\begin{aligned} & 24 \mathrm{~V}<\mathrm{V}_{\text {IN }}<58 \mathrm{~V}, \mathrm{CTL}=0 \mathrm{PEN} \\ & \mathrm{~V}_{\text {IN }}=7 \mathrm{~V}, \mathrm{CTL}=0 \mathrm{PPEN} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~A} \\ & 1 \mathrm{~A} \end{aligned}$		
Input Turn-On Voltage, VIN	R10 $=332 \mathrm{k}, \mathrm{R} 11=86.6 \mathrm{k}, \mathrm{V}_{\text {IN }}$ Rising		6.8 V	
Input Turn-Off Voltage, $\mathrm{V}_{\text {IN }}$	R10 $=332 \mathrm{k}$, R11 $=86.6 \mathrm{k}, \mathrm{V}_{\text {IN }}$ Falling		5.8 V	
Output Voltage, V $\mathrm{V}_{\text {OUT }}$	$\begin{aligned} & 100 \mathrm{~mA}<\mathrm{I}_{\mathrm{OUT}}<3 \mathrm{BA} \text { (See Figure 2), R2 }=5.23 \mathrm{k}, \\ & \mathrm{R} 3=100 \mathrm{k} 1 \%, \mathrm{R} 4=0.015 \Omega \end{aligned}$	23.4 V		24.8 V
Efficiency	$\mathrm{V}_{\text {IN }}=48 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=3 \mathrm{~A}$		93\%	
Switching Frequency	R1 $=43.2 \mathrm{k}$		525 kHz	
Output Current Limit	$\mathrm{R} 4=0.015 \Omega$		3.6A	

คUICK START PROCEDURE

To use DC2154A to evaluate the performance of the LTM8056, refer to Figure 1 for the proper measurement equipment setup, Figure 2 for the maximum output current versus input voltage and then follow the procedure below:
NOTE: Do not hot-plug the $V_{\text {IN }}$ terminal at high input voltages. The absolute maximum voltage on V_{IN} is 60 V and hot-plugging a power supply through wire leads to the demonstration circuit can cause the voltage on the extremely low ESR ceramic input capacitor to ring to twice its DC value. In order to protect the LTM8056, an aluminum electrolytic capacitor with higher ESR is placed at the input terminals. This may protect against some, but not all, input transients due to a hot-plugged power supply. See Application Note 88 for more details.

NOTE: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probetip directly to terminals across
the $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}$ capacitors. See Figure 3 for proper scope probe technique. Solder terminals near the input or output capacitors, if necessary.

1. Connect the RUN terminal to ground with a clip-on lead. Connect the power supply (with power off), load, and meters as shown in Figure 1.
2. After all connections are made, turn on the input power and verify that the input voltage is between 7 V and 58 V .
3. Remove the clip-on lead from RUN. Verify that $\mathrm{V}_{\text {OUT }}$ is 24 V .

NOTE: If $\mathrm{V}_{\text {OUT }}$ is too low, temporarily disconnect the load to make sure that the load is not set too high.
Once the proper output voltage is established, adjust the input voltage and load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters.

PUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Setup

DEMO MANUAL DC2154A

PUICK START PROCEDURE

Figure 2. Maximum Output Current vs Input Voltage for $V_{0 U T}=\mathbf{2 4 V}$

Figure 3. Proper Scope Probe Technique

PUICK START PROCEDURE

Figure 4. $V_{\text {OUT }}$ Noise Spectrum ($V_{I N}=48 V, V_{O U T}=24 V$ at 3 A$)$

DEMO MANUAL DC2154A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	3	C1, C2, C3	CAP., X7R, 2.2 $\mu \mathrm{F}, 100 \mathrm{~V}, 10 \% 1206$	MURATA, GRM31CR72A225KA73L
2	1	C5	CAP., X7R, 0.22 ${ }^{\text {F, }, 16 \mathrm{~V}, 10 \% 0603}$	TDK, C1608X7R1C224K
3	1	C4	CAP., X7R, 0.01 ${ }^{\text {F, }} 16 \mathrm{~V}, 10 \% 0603$	MURATA, GRM188R71C103KA01D
4	2	C7, C8	CAP., X5R, 22 $\mu \mathrm{F}, 25 \mathrm{~V}, 20 \% 0805$	MURATA, GRM21BR61E226ME44L
5	2	C6, C9	CAP., TANTALUM, 15山F, 50V, 20\% 7343	AVX, TPSE156M050R0250
6	1	R1	RES., CHIP, 43.2k, 1/10W, 1\% 0603	VISHAY, CRCW060343K2FKEA
7	1	R2	RES., CHIP, 5.23k, 1/10W, 1\% 0603	VISHAY, CRCW06035K23FKEA
8	1	R3	RES., CHIP, 100k, 1/10W, 1\% 0603	VISHAY, CRCW0603100KFKEA
9	1	R4	RES., CHIP, 0.015 2 , 0.5W, 1\%, 2010	VISHAY, WSL2010R0150FEA
10	1	U1	58 V IN BUCK-BOOST μ MODULE REGULATOR	LINEAR TECH., LTM8056EY\#PBF

Optional Demo Circuit Components

1	1	C14	CAP., ALUM. ELEC., 47uF, 63V 8×10.2	SUN ELECT., 63CE47BS
2	0	C10, C15, C18, C19 (OPT)	CAP., 0603	
3	0	C11 (0PT)	CAP., X7R, 1 1 F, 100V, 10\% 1206	TDK, C3216X7R2A105K160AA
4	0	C12, C13, C16 (OPT)	CAP., 1210	
5	1	C17	CAP., X7R, 0.1 1 F, 25V, 10\% 0603	MURATA, GRM188R71E104KA01D
6	0	D1, D2 (OPT)	DIODE, OPTION, SOD-123	
7	0	L1, L2 (OPT)	INDUCTOR, $10 \mu \mathrm{H}$	SUMIDA, CDRH8D43NP-100NC
8	0	R5, R9, R13, R14, R15 (OPT)	RES., CHIP, 0603	
9	2	R6, R7	RES., CHIP, $0 \Omega, 1 / 10 \mathrm{~W}, 1 \% 0603$	VISHAY, CRCW0603000ZOEA
10	0	R8 (OPT)	RES., OPTION, 2010	
11	1	R10	RES., 332k, 1/10W, 1\%, 0603	VISHAY, CRCW0603332KFKEA
12	1	R11	RES., CHIP, 86.6k, 1/10W, 1\% 0603	VISHAY, CRCW060386K6FKEA
13	1	R12	RES., CHIP, 20』, 1/10W, 5\% 0603	VISHAY, CRCW060320ROJNEA
14	0	U2 (OPT)	IC., LT6015IS5 TSOT-S5	LINEAR TECH., LT6015IS5\#TRPBF
Hardware				
1	15	E1-E15	TESTPOINT, TURRET, 0.094" MTG. HOLE	MILL-MAX, 2501-2-00-80-00-00-07-0
2	2	J1, J2	JACK BANANA	KEYSTONE, 575-4
3	4	MH1-MH4	STANDOFF, NYLON, SNAP-ON, 0.500"	KEYSTONE, 8833

SCHEMATIC DIAGRAM

DEMO MANUAL DC2154A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT' TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

> Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

[^0]: $\boldsymbol{\mathcal { O }}$, LT, LTC, LTM, Linear Technology, the Linear logo and μ Module are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

