DESCRIPTIO

Demonstration circuit 2269A-A is a dual-output, high efficiency, high density, μ Module ${ }^{\circledR}$ supply on asmall 1.5 " $\times 1.2^{\prime \prime}$ PCB board with 4.5 V to 26.5 V input range. Each output can supply 13A maximum load current. The demo board has a LTM ${ }^{\circledR} 4676 \mu$ Module regulator, which is a dual 13A or single 26A step-down regulator with PMBus power system management. The DC2269A can be easily inserted to an edge connector for testing and debugging. It has an optional input filter inductor (L1) to further reduce input ripple EMI noise.
DC2269A-A powers up to default settings and produce power based on configuration resistors without the need for any serial bus communication. This allows easy evaluation of the DC/DC converter. To fully explore the extensive power system management features of the part, download the GUI software LTpowerPlay ${ }^{\text {TM }}$ onto your PC and use

LTC's I^{2} C/SMBus/PMBus dongle DC2086A together with DC1613A to connect to the board. LTpowerPlay allows the user to reconfigure the part on the fly and store the configuration in EEPROM, view telemetry of voltage, current, temperature and fault status.

GUI Download

The software can be downloaded from:
http://www.linear.com/Itpowerplay
For more details and instructions of LTpowerPlay, please refer to LTpowerPlay GUI for LTM4676 Quick Start Guide.
Design files for this circuit board are available at http://www.linear.com/demo/DC2269A-A
$\overline{\boldsymbol{\Sigma}}$, LT, LTC, LTM, Linear Technology, the Linear logo and μ Module are registered trademarks and LTpowerPlay is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PGRFORMANCE SUMMARY

Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	VALUE
Input Voltage Range		4.5 V to 26.5 V
Output Voltage, $\mathrm{V}_{\text {OUT0 }}$	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ to $26.5 \mathrm{~V}, \mathrm{I}_{\text {OUT0 }}=0 \mathrm{~A} \mathrm{to} 13 \mathrm{~A}$	0.5 V to 4 V , Default: 1 V
Maximum Output Current, I IOUT0	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ to $26.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}$ to 4 V	13 A
Output Voltage, $\mathrm{V}_{\text {OUT1 }}$	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ to $26.5 \mathrm{~V}, \mathrm{I}_{\text {OUT1 }}=0 \mathrm{~A}$ to 13 A	0.5 V to 5.4 V , Default: 1.8 V
Maximum Output Current, I IOUT1	$\mathrm{V}_{\text {IN }}=4.5 \mathrm{~V}$ to $26.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}$ to 5.4 V	13 A
Typical Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=1.8 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=13 \mathrm{~A}$	86.3%
Default Switching Frequency		500 kHz

Figure 1. Dual-Output LTM4676/DC2269A-A Demo Circuit

DEMO MANUAL DC2269A-A

DUICK START PROCEDURE

Table 1. LTM4676 Demo Cards for Up to 100A Point-of-Load Regulation

MAXIMUM OUTPUT CURRENT	NUMBER OF OUTPUT VOLTAGES	NUMBER OF LTM4676 μ MODULE REGULATORS ON THE BOARD	DEMO BOARD NUMBER
$13 A, 13 A$	2	1	DC1811A
$13 \mathrm{~A}, 13 \mathrm{~A}$	2	1	DC2269A-A
26 A	1	1	DC2087A
50 A	1	2	DC1989A-A
75 A	1	3	DC1989A-B
100 A	1	4	DC1989A-C
100 A	1	$1+(3 \times$ LTM4620A $)$	DC2106A-A
130 A	1	$1+(3 \times$ LTM4630 $)$	DC2106A-B

DC2269A-A is easy to set up to evaluate the performance of the LTM4676EY. It can be easily inserted to an edge connector (SAMTEC MEC2-20-01-L-DV--TR) for testing and debugging. Refer to Figure 2 for the proper measurement equipment setup and follow the procedure below.

1. With power off, connect the input power supply to V_{IN} (4.5V-26.5V) and GND (input return).
2. Connect the 1.0 V output load between $\mathrm{V}_{\text {OUT }}$ and GND (Initial load: no load).
3. Connect the 1.8 V output load between $\mathrm{V}_{\text {out }}$ and GND (Initial load: no load).
4. Connect the DVMs to the input and outputs.
5. Turn on the input power supply and check for the proper output voltages. $\mathrm{V}_{\text {OUT0 }}$ should be $1.0 \mathrm{~V} \pm 1 \%$, and $\mathrm{V}_{\text {OUT1 }}$ should be $1.8 \pm 1 \%$.
6. Once the proper output voltages are established, adjust the loads within the operating range and observe the output voltage regulation, ripple voltage and other parameters.
7. Connect the dongle and control the output volt-ages from the GUI. See "LTpowerPlay GUI for the LTM4676 Quick Start Guide" for details.

Note: When measuring the output or input voltage ripple, do not use the long ground lead on the oscilloscope probe. See Figure 3 for the proper scope probe technique. Short, stiff leads need to be soldered to the (+) and (-) terminals of an output capacitor. The probe's ground ring needs to touch the $(-)$ lead and the probe tip needs to touch the (+) lead.

Connecting a PC to DC2269A-A

You can use a PC to reconfigure the power management features of the LTM4676 such as: nominal $\mathrm{V}_{\text {OUT }}$, margin set points, OV/UV limits, temperature fault limits, sequencing parameters, the fault log, fault responses, GPIOs and other functionality. The DC2086A dongle may be plugged when $\mathrm{V}_{\text {IN }}$ is present.

PUICK START PROCEDURE

Figure 2. Proper Measurement Equipment Setup

Figure 3. Measuring Output Voltage Ripple

DEMO MANUAL DC2269A-A

PUICK START PROCEDURE

Figure 4. Demo Setup with PC

Figure 5. Efficiency vs Load Current at $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$

Figure 6. Efficiency vs Load Current at $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$

PUICK START PROCEDURE

Figure 7. Output Voltage $\mathrm{V}_{\text {Outo }}$ vs Load Current (V0uto RANGE = 1)

Figure 9. Output Voltage Ripple at $V_{\text {IN }}=12 V, V_{\text {OUTO }}=1 V, I_{\text {OUTO }}=13 \mathrm{~A}$

Figure 8. Output Voltage $\mathrm{V}_{\text {OUT1 }}$ vs Load Current ($\mathrm{V}_{\text {OUT1 }}$ RANGE $=1$)

Figure 10. Output Voltage Ripple at $V_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUTO }}=1.8 \mathrm{~V}, \mathrm{I}_{\text {OUTO }}=13 \mathrm{~A}$

Figure 11. Thermal Performance at $\mathrm{V}_{I \mathrm{~N}}=12 \mathrm{~V}, \mathrm{~V}_{0 U T 0}=1 \mathrm{~V} / 11 \mathrm{~A}, \mathrm{~V}_{0 U T 1}=1.8 \mathrm{~V} / 11 \mathrm{~A}$, $\mathrm{f}_{\mathrm{SW}}=500 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=23^{\circ} \mathrm{C}$, 200LFM Airflow

DEMO MANUAL DC2269A-A

LTPOWERPLAY SOFTWARE GUI

LTpowerPlay is a powerful Windows based development environment that supports Linear Technology power system management ICs, including the LTM4675, LTM4676, LTC3880, LTC3882, LTC3883, LTC2974 and LTC2978. The software supports a variety of different tasks. You can use LTpowerPlay to evaluate Linear Technology ICs by connecting to a demo board system. LTpowerPlay can also be used in an offline mode (with no hardware present) in order to build a multichip configuration file that can be saved and reloaded at a later time. LTpowerPlay provides unprecedented diagnostic and debug features. It becomes a valuable diagnostic tool during board bring-up to program or tweak the power management scheme in a system, or to diagnose power issues when bringing up
rails. LTpowerPlay utilizes the DC1613A and DC2086A USB-to-SMBus controller to communicate with one of many potential targets, including the LTM4676, the LTC3880, LTC3882 and the LTC3883's demo system, or a customer board. The software also provides an automatic update feature to keep the software current with the latest set of device drivers and documentation. The LTpowerPlay software can be downloaded from:

http://linear.com/ltpowerplay

To access technical support documents for LTC Digital Power Products visit Help. View online help on the LTpowerPlay menu.

Figure 12. LTpowerPlay Main Interface

DEMO MANUAL DC2269A-A

LTPOWERPLAY QUICK START PROCGDURE

The following procedure describes how to use LTpowerPlay to monitor and change the settings of LTM4676.

1. Download and install the LTPowerPlay GUI:
http://linear.com/ltpowerplay
2. Launch the LTpowerPlay GUI.
a. The GUI should automatically identify the DC2269A-A. The system tree on the left hand side should look like this:

b. A green message box shows for a few seconds in the lower left hand corner, confirming that LTM4676 is communicating:

c. In the Toolbar, click the "R" (RAM to PC) icon to read the RAM from the TM4676. This reads the configuration from the RAM of LTM4676 and loads it into the GUI.

d. Ifyou want to change the output voltage to a different value, like 1.5 V . In the Config tab, type in 1.5 in the VOUT_COMMAND box, like this:

Then, click the "W" (PC to RAM) icon to write these register values to the LTM4676. After finishing this step, you will see the output voltage will change to 1.5 V .

Ifthe write is successful, you will seethe following message:

e. You can save the changes into the NVM. In the tool bar, click "RAM to NVM" button, as following:

f. Save the demo board configuration to a (*. proj) file. Click the Save icon and save the file. Name it whatever you want.

DEMO MANUAL DC2269A-A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	6	CIN1, CIN2, CIN3, CIN4, CIN5, CIN6	CAP, 1210 10⿲F 10\% 25V X5R	MURATA GRM32DR61E106KA12L
2	2	C01, C06	CAP, 7343 330 $2 \mathrm{~F} 20 \% 6.3 \mathrm{~V}$ POSCAP	PANASONIC 6TPF330M9L
3	5	CO2, C03, C04, C05, C07	CAP, 1210 100 $\mu \mathrm{F}$ 10\% 6.3V X5R	AVX 12106D107KAT2A
4	2	C1, C5	CAP, 0603 2200pF 10\% 50V X7R	AVX 06035C222KAT2A
5	2	C9, C10	CAP, $080547 \mu \mathrm{~F} 20 \% 6.3 \mathrm{~V}$ X R	MURATA GRM21BR60J476ME15L
6	2	C12, C13	CAP, 0603 10山F 20\% 25V X5R	MURATA GRM188R61E106MA73J
7	1	D1	DIODE, SCHOTTKY BARRIER RECTIFIER	DIODES INC. B0530WS-7-F
8	1	J2	HEADER, 4PIN 2mm STR DL	HIROSE DF3A-4P-2DSA
9	1	L1	IND, 1.0 0 H	COILCRAFT XAL5030-102MEC
10	3	R1, R22, R39	RES, $0603100 \Omega 5 \% 0.1 \mathrm{~W}$	VISHAY CRCW0603100RJNEA
11	2	R6, R33	RES, 06030Ω	VISHAY CRCW06030000ZOEA
12	1	R7	RES, 0603 4.99k 1% 0.1W	VISHAY CRCW06034K99FKEA
13	10	$\begin{aligned} & \text { R10, R11, R12, R13, R14, R15, R16, } \\ & \text { R17, R18, R21 } \end{aligned}$	RES, 0603 10k $5 \% 0.1 \mathrm{~W}$	VISHAY CRCW060310KOJNEA
14	1	R20	RES, $06034.22 \mathrm{k} \Omega$ 1\% 1/10W	VISHAY CRCW06034K22FKEA
15	1	R29	RES, 06036.34 k ת 1\% 0.1W	VISHAY CRCW06036K34FKEA
16	3	R36, R37, R38	RES, $060310 \Omega 5 \% 0.1 \mathrm{~W}$	VISHAY CRCW060310ROJNEA
17	1	U1	IC, VOLTAGE REGULATOR LGA	LINEAR TECH. LTM4676EY\#PBF

Additional Demo Board Circuit Components

1	0	C2, C3, C4, C6, C7, C8, C11	CAP, 0603 OPTION	OPTION
2	0	R2, R19, R31, R32	RES, 0805 OPTION	OPTION
3	0	R3, R4, R5, R8, R9, R23, R24, R25, R27, R28	RES, 0603 OPTION	OPTION
4	0	R35	RES, 1206 OPTION	OPTION
	0	R40	RES, 1210 OPTION	OPTION

Hardware: For Demo Board Only

1	1	J1	CONN., CARD EDGE	SAMTEC MEC2-20-01-L-DV--TR

SCHEMATIC DIAGRAM

DEMO MANUAL DC2269A-A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT'TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

> Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

