LTC3370EUH 4-Channel 8A Configurable Buck DC/DCs

DESCRIPTIO

Demonstration circuit 2311A is a 4-output power supply featuring the LTC ${ }^{\circledR} 3370$. The LTC3370 has four current mode synchronous buck regulators which can be configured to share eight individual 1 A power stages to create one of eight combinations of $1 \mathrm{~A}, 2 \mathrm{~A}, 3 \mathrm{~A}$ and 4 A regulators. The DC2311A is set up as four 2A buck regulators but can be modified to one of the other seven configurations.
The input range of the LTC3370 is ideal for single cell Li-Ion/Polymer battery applications. The buck regulators are enabled via external precision threshold enable pins to allow hardwired power up sequences.

The LTC3370 has a default operating frequency of 2 MHz but can be set between 1 MHz to 3 MHz using an external resistor. The LTC3370 also has a PLL/MODE pin which allows the internal oscillator to synchronize to an external clock from 1 MHz to 3 MHz or configure the regulators to forced continuous mode or burst mode.

Refer to the LTC3370 data sheet for more details on the electrical and timing specifications.

Design files for this circuit board are available at http://www.linear.com/demo/DC2311A.
$\boldsymbol{\triangle T}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMAПCE SUMMARY Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Input Supply Range (VINA-H)		2.25	5.5	V
VCC Operating Voltage		2.7	5.5	V
$\mathrm{~V}_{\text {OUT1 }}$	0 to 2 A	1.2	V	
$\mathrm{~V}_{\text {OUT2 }}$	0 to $2 \mathrm{~A}, \mathrm{~V}_{\text {INCD }}>2.5 \mathrm{~V}$	2.5	V	
$\mathrm{~V}_{\text {OUT3 }}$	0 to 2 A	1.8	V	
$\mathrm{~V}_{\text {OUT4 }}$	0 to $2 \mathrm{~A}, \mathrm{~V}_{\text {INGH }}>3.3 \mathrm{~V}$	3.3	V	

BOARD PHOTO

DEMO MANUAL DC2311A

TYPICAL APPLICATION

4×2 Quad Buck Application

Buck Efficiency vs ILOAD

C3	C2	C1	BUCK1	BUCK2	BUCK3	BUCK4
0	0	0	$2 A$	$2 A$	$2 A$	2 A
0	0	1	$3 A$	1 A	2 A	2 A
0	1	0	3 A	1 A	1 A	3 A
0	1	1	4 A	1 A	1 A	2 A
1	0	0	3 A	2 A	-	3 A
1	0	1	4 A	-	2 A	2 A
1	1	0	4 A	-	1 A	3 A
1	1	1	4 A	-	-	4 A

PUICK START PROCEDURE

The DC2311A is easy to set up to evaluate the performance of the LTC3370. Refer to Figure 1 and Figure 2 for proper measurement equipment setup and follow the evaluation procedure below.

NOTE. When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUt }}$ and GND terminals. See Figure 2 for proper scope probe technique.

1. Set the JP1 - JP4 jumpers on the DC2311A board to the ON position.
2. Set the JP5 jumper on the DC2311A board to the BURST position.
3. Set the JP6 jumper on the DC2311A board to the V_{CC} position.
4. With power off, connect a 0 V to $6 \mathrm{~V}, 50 \mathrm{~mA}$ power supply (PS5) to $\mathrm{V}_{\text {CC }}$ input terminal and GND with a series ammeter and a voltmeter as shown in Figure 1.
5. Turn on and set the PS5 to a desired input voltage between 2.7 V and 5.5 V .
6. With a digital volt meter, measure the voltage on the temp pin. This represents the die temperature,
$\left(V_{\text {TEMP }}-45 \mathrm{mV}\right) / 7 \mathrm{mV}={ }^{\circ} \mathrm{C} .220 \mathrm{mV}=25^{\circ} \mathrm{C}$
7. With power off, connect 0 V to $6 \mathrm{~V}, 2 \mathrm{~A}$ power supplies to each input pair (PS1-PS4), $\mathrm{V}_{\text {INAB }}, \mathrm{V}_{\text {INC }} / V_{\text {IND }}, \mathrm{V}_{\text {INE }} /$ $\mathrm{V}_{\text {INF }}, \mathrm{V}_{\text {ING }} / V_{\text {INH }}$ and GND with a series ammeter and a voltmeter as shown in Figure 1. A single 0 V to 6 V , 10A supply can be used instead to supply all $V_{\text {IN }}$ inputs and the $V_{\text {CC }}$ input simultaneously.
8. Turn on and set the PS1 input power supply to 5.0 V and observe that $\mathrm{V}_{\text {OUT1 }}$ regulates to 1.2 V .
NOTE. Make sure that the input voltage does not exceed 6 V .
9. With power off, connect a 0 A to 2 A load to $\mathrm{V}_{\text {OUT1 }}$ and GND with a series ammeter and a voltmeter as shown in Figure 1.
10. Slowly increase the load from OA to 2 A and observe the output voltage. The output ripple may also be observed
using an oscilloscope with the probe connected as shown in Figure 2.
11. Set Load1 to 100 mA .
12. Repeat steps 8 to 11 for each output using their respective power supplies and loads. Each output voltage should regulate to the voltage indicated on the silkscreen of the DC2311A.
13. Momentarily short $\mathrm{V}_{\text {OUT1 }}$ to ground with a clip lead and observe that the PGOODALL LED, D1, on the demo board illuminates. The LED shuts off when the short is removed.
14. With Load1 set to 100 mA , observe the burst mode ripple on $V_{\text {OUT1 }}$.
15. Set the JP5 jumper on the DC2311A board to the FORCED CONT position and observe the forced continuous mode ripple on $\mathrm{V}_{\text {OUT1 }}$.
16. With an oscilloscope using two probes each set to $1 \mathrm{~V} /$ Div vertical scale and $1 \mu \mathrm{~s} /$ Div horizontal scale, compare the phase between SWAB to SWCD, SWEF, and then SWGH. Observe that the switch nodes are $90^{\circ}, 270^{\circ}$, and 180° out of phase respectively with SWAB.
17. Set the JP5 jumper on the DC2311A board to the PLL position.
18. Set a pulse generator to output a 0 V to 5 V pulse at 2MHz, 50\% Duty cycle and connect it to the PLL/MODE terminal and GND.
19. Change the frequency of the pulse generator from 2 MHz to 3 MHz and observe how the frequency of SWAB follows the pulse generator.
20. Set LOAD1 greater than 1.0A. With an oscilloscope probe on SWAB, remove the pulse signal to the PLL/ MODE terminal and observe how the switch frequency settles from 3 MHz back to 2 MHz .
21. Refer to the LTC3370 data sheet for more details on how the LTC3370 operates.
22. When done, turn off all loads and power supplies.

DEMO MANUAL DC2311A

pUICK START PROCEDURE

Figure 1. Proper Measurement Equipment Setup

Figure 2. Measuring Input or Output Ripple

mODIFYInG THE DC2311A TO OTHER POWER CONFIGURATIONS

The LTC3370 can be configured to one of eight different power configurations as shown in Table 1. To reconfigure the DC2311A to a different configuration some resistors will need to be changed, traces will need to be shorted together, and often traces will need to be cut. Follow the steps below to modify the board to a desired configuration.

1. Choose the desired configuration from Table 1.

Table 1. Master Slave Program Combinations (Each Letter Corresponds to a $V_{I N}$ and SW Pair)

PROGRAM CODE C3C2C1	BUCK 1	BUCK 2	BUCK 3	BUCK 4
000	AB	CD	EF	GH
001	ABC	D	EF	GH
010	ABC	D	E	FGH
011	ABCH	D	E	FG
100	ABC	DE	Not Used	FGH
101	ABCD	Not Used	EF	GH
110	ABCD	Not Used	E	FGH
111	ABCD	Not Used	Not Used	EFGH

2. Set the associated C bit pins high or low as per Table 1 by opening and shorting the appropriate resistors. C1, C 2 , and C 3 are set high by shorting R7, R11, and R14 respectively. C1, C2, and C3 are set low by shorting R9, R13, and R16 respectively. The C bit resistors are 0603 resistors located on the bottom of the board as shown in Figure 3.

Figure 3. C Bit Resistors and Optional Output Capacitors for $V_{\text {OUT1 }}$ and $V_{\text {OUT4 }}$
3. The DC2311A is set up with the following power stage switch nodes and $V_{\text {IN }}$ nodes connected together; A \& $B, C \& D, E \& F$, and G \& H. Any configuration using 1A or 3A regulators will require one or more of the $V_{\text {IN }}$ and switch nodes to be separated. Refer to Table 1 to determine which power stages are connected together and separated. Cut the required $\mathrm{V}_{\text {IN }}$ nodes by cutting the $\mathrm{V}_{\text {IN }}$ traces on the bottom of the board near the $\mathrm{V}_{\text {IN }}$ terminals as shown in Figure 4.

Figure 4. Separate $\mathrm{V}_{\mathbf{I N}}$ Pairs by Cutting Traces at Terminals

mODIFYInG THE DC2311A TO OTHEß POWEß CONFIGURATIONS

4. Any switch node associated with a $V_{\text {IN }}$ trace that was cut will also need to be cut. The SWC/SWD traces and SWD/SWF traces can be cut in between to pads near the SW pins as shown in Figure 5. The SWG/SWH traces only need to be cut for the " 4112 " configuration. SWH needs to be cut between the SWH pin and L4 as shown in Figure 6.

Figure 5. Cut SWC and SWD connection near pins

Figure 6. Cut SWH trace between L4 and SWH pin
5. For all combinations containing 3 A and 4 A outputs, the $V_{\text {IN }}$ nodes of adjoining power stages will need to be connected together. Connect all $\mathrm{V}_{\text {IN }} \mathrm{S}$ of adjoining power stages at the $\mathrm{V}_{\text {IN }}$ terminals with a 22AWG wire or larger.
6. All switch nodes of adjoining power stages will need to be connected together. Each power stage has a pad to solder a small bus wire, 28AWG. The switch node pads are also shown in Figure 5 and Figure 6. Carefully solder a bus wire as short as possible between adjoining power stages.

Note: For the 4112 combination switch AB will need to connect to switch C and switch H. For the 332 combination switch D will need to connect to switch E.
7. The XAL4020-222M inductors are rated for 5.5 A . This is less than the current limit of the 3A or 4A regulators. The pads for L1 and L4 as sized to accommodate a $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ inductor such as the Toko FDSD05xx or the Coilcraft XAL05xx series. Change inductors L1 and/or L4 to accommodate current limit conditions if needed.
8. Remove any inductors of unused regulators.

Note: For the 323 configuration, L2 needs to be populated and L3 needs to be removed to utilize the regulator 2 FB network.
9. The output capacitance requirement is a minimum of $22 \mu \mathrm{~F}$ for each 1 A of output current. Each output has an optional 0805 capacitor on the bottom of the board. Add the required amount of capacitance to C5 and/or C29 (shown in Figure 3) for $\mathrm{V}_{\text {OUT1 }}$ and $\mathrm{V}_{\text {OUT4 }}$ respectively, if needed.
10. Set the EN jumpers of any unused regulators to the OFF position.

APPLICATION INFORMATION

The DC2311A can be used to evaluate each of the eight configurations of the LTC3370 from 1 MHz to 3 MHz . The following efficiency graphs and transient response plots

1A Buck Regulator, Transient Response (Burst Mode Operation)

LOAD STEP $=100 \mathrm{~mA}$ TO 700 mA
$V_{\text {IN }}=3.3 \mathrm{~V}$
$V_{\text {OUT }}=1.8 \mathrm{~V}$
4A Buck Regulator, Transient Response (Burst Mode Operation)

[^0]illustrate how a $1.8 \mathrm{~V}, 1 \mathrm{~A}$ regulator performs compared to a 1.8 V , 4 A regulator. Please refer to the LTC3370 data sheet for more performance information for the LTC3370.

1A Buck Regulator, Transient
Response (Forced Continuous Mode)

LOAD STEP $=100 \mathrm{~mA}$ TO 700 mA
$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$
$\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$

4A Buck Regulator, Transient Response (Forced Continuous Mode)

LOAD STEP $=400 \mathrm{~mA}$ TO 2.8 A
$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$
$\mathrm{V}_{\text {OUT }}=1.8 \mathrm{~V}$

DEMO MANUAL DC2311A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	C1	CAP, CHIP, X5R, $22 \mu \mathrm{~F}, \pm 20 \%, 6.3 \mathrm{~V}, 0805$	TAIYO YUDEN, JMK212BJ226MG-T
2	9	$\begin{aligned} & \text { C3, C6, C8, C10, C14, C17, C19, } \\ & \text { C23, C26 } \end{aligned}$	CAP, CHIP, X5R, 10 F , $\pm 20 \%, 6.3 \mathrm{~V}, 0603$	TDK, C1608X5R0J106M
3	4	C4, C11, C20, C27	CAP, CHIP, X5R, 47 ${ }^{\text {F }}, \pm 20 \%, 6.3 \mathrm{~V}, 0805$	TAIYO YUDEN, JMK212BJ476MG
4	4	C7, C15, C24, C29	CAP, CHIP, NPO, 10pF, $\pm 5 \%, 50 \mathrm{~V}, 0402$	AVX, 04025A100JAT2A
5	4	L1-L4	IND, SMT, $2.2 \mu \mathrm{H}, 38 \mathrm{~m} \mathrm{\Omega}$, $\pm 20 \%, 5.5 \mathrm{~A}, 4 \mathrm{~mm} \times 4 \mathrm{~mm}$	COILCRAFT, XAL4020-222MEC
6	2	R2	RES, CHIP, $232 \mathrm{k} \Omega, \pm 1 \%, 1 / 10 \mathrm{~W}, 0603$	VISHAY, CRCW0603232KFKEA
7	1	R3	RES, CHIP, 464k $, \pm 1 \%, 1 / 10 \mathrm{~W}, 0603$	VISHAY, CRCW0603464KFKEA
8	1	R5	RES, CHIP, 665k $, \pm 1 \%, 1 / 10 \mathrm{~W}, 0603$	VISHAY, CRCW0603665KFKEA
9	1	R6	RES, CHIP, 309k $, \pm 1 \%, 1 / 10 \mathrm{~W}, 0603$	VISHAY, CRCW0603309KFKEA
10	1	R10	RES, CHIP, 806k $\Omega, \pm 1 \%, 1 / 10 \mathrm{~W}, 0603$	VISHAY, CRCW0603806KFKEA
11	1	R12	RES, CHIP, 649k $\Omega, \pm 1 \%, 1 / 10 \mathrm{~W}, 0603$	VISHAY, CRCW0603649KFKEA
12	1	R18	RES, CHIP, 511k $, \pm 1 \%, 1 / 10 \mathrm{~W}, 0603$	VISHAY, CRCW0603511KFKEA
13	1	R21	RES, CHIP,162k $, \pm 1 \%, 1 / 10 \mathrm{~W}, 0603$	VISHAY, CRCW0603162KFKEA
14	1	R30	RES, CHIP,402k $\Omega, \pm 1 \%, 1 / 10 \mathrm{~W}, 0603$	VISHAY, CRCW0603402KFKEA
15	1	U1	4-CHANNEL 8A CONFIGURABLE BUCK DC-DCs,TSSOP	LINEAR TECH., LTC3370EUH\#PBF

Additional Demo Board Circuit Components

16	1	C2	CAP, POSCAP, $100 \mu \mathrm{~F}, \pm 20 \%, 6.3 \mathrm{~V}$, SMT	PANASONIC, 6TPG100MG
17	0	C5, C12, C21, C28 (OPT)	CAP, CHIP, 0805	
18	6	C6, C10, C14, C17, C19, C23	CAP, POSCAP, $47 \mu \mathrm{~F}, \pm 20 \%, 6.3 \mathrm{~V}$, SMT	PANASONIC, 6TPC47M
19	6	C9, C13, C16, C18, C22, C25	CAP, POSCAP, $47 \mu \mathrm{~F}, \pm 20 \%, 6.3 \mathrm{~V}$, SMT	PANASONIC, 6TPC47M
20	1	D1	DIODE, LED, SUPER RED DIFF, 0603 SMD	LUMEX, SML-LX0603SRW-TR
21	4	R1, R4, R8, R15	RES, CHIP, $20 \Omega, \pm 1 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW040220R0FKED
22	0	R7, R11, R14 (OPT)	RES, CHIP, $1 / 10 \mathrm{~W}, 0603$	
23	3	R9, R13, R16	RES, CHIP, 0Ω JUMPER, $1 / 10 \mathrm{~W}, 0603$	VISHAY, CRCW06030000Z0EA
24	6	R17, R20, R22, R24, R26, R28	RES, CHIP, $1 \mathrm{k} \Omega, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW04021K00JNED
25	5	R19, R23, R25, R27, R29	RES, CHIP, $1.00 \mathrm{M} \Omega, \pm 5 \%, 1 / 16 \mathrm{~W}, 0402$	VISHAY, CRCW04021M00JNED

Hardware

26	20	E1-E18, E27, E29	TURRET, 0.09 DIA	MILL-MAX, 2501-2-00-80-00-00-07-0
27	10	E19-E26, E28, E30	TURRET, 0.061 DIA	MILL-MAX, 2308-2-00-80-00-00-07-0
28	5	JP1-JP4, JP6	$2 m m$ to HEADER $1 \times 3,2 \mathrm{~mm}$	SAMTEC, TMM-103-02-L-S
29	1	JP5	$2 m m$ to HEADER $1 \times 4,2 \mathrm{~mm}$	SAMTEC, TMM-104-02-L-S
30	6	JP1-JP6	SHUNT, 2mm	SAMTEC, 2SN-KB-G
31	4		STAND-OFF NYLON, 0.375" TALL (SNAP-ON)	KEYSTONE, 8832 (SNAP 0N)

SCHEMATIC DIAGRAM

DEMO MANUAL DC2311A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

[^0]: LOAD STEP $=400 \mathrm{~mA}$ TO 2.8 A
 $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$
 $V_{\text {OUT }}=1.8 \mathrm{~V}$

