LTC4236-1/LTC4236-2 Dual Ideal Diode-OR and Single Hot Swap Controller with Current Monitor

DESCRIPTION

Demonstration circuit 2314A is intended to demonstrate the performance of the LTC4236-1/LTC4236-2 Dual Ideal Diode-OR and Single Hot Swap Controller with Current Monitor. The controller operates in redundant supply circuits, where each rail has an individual ideal diode, and the outputs are connected to the load through a single Hot Swap circuit. The controller enables monitoring of the load current by providing a signal that is $100 \times$ the sense resistor voltage.

The DC2314A allows verification of the LTC4236 Hot Swap and ideal diode functionality during individual rail ramp-up and ramp-down events, during power supply switchover, in steady state, and in overcurrent fault conditions.

The DC2314A is configured for 12 V operation with a 10 A current load.

The main board components are the LTC4236 controller, two power MOSFETs functioning as ideal diodes and one power MOSFET controlled as a HotSwap switch, two jumpers for enabling the second ideal diode and Hot Swap, four LEDs to indicate the power good state, fault condition, and the state of the MOSFETs operating as ideal diodes, seven banana jacks for connecting power supplies and loads, and many turrets and pads for observing circuit signals.

Table 1. DC2314A Assembly Options

Version	Part	Overcurrent Fault
DC2314A-A	LTC4236-1	LATCHOFF
DC2314A-B	LTC4236-2	RETRY

Design files for this circuit board are available at http://www.linear.com/demo/DC2314A
$\boldsymbol{\Omega}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

BOARD AND COMTROLLER PERFORMANCE SUMMARY specifications are at $T_{A}=25^{\circ} \mathrm{C}$

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Supplies						
$V_{\text {IN }}$	Input Supply Range		2.9		18.0	V
$\mathrm{I}_{\text {LIM }}$	Board Current Limit	OUT $=11 \mathrm{~V}$	8.91	10	11.11	A
$\mathrm{V}_{\text {Intuc }}$	Internal Regulator Voltage		4.5	5	5.5	V
$\mathrm{V}_{\text {INTVCC(UVL) }}$	Internal $\mathrm{V}_{\text {CC }}$ Undervoltage Lockout	INTV ${ }_{\text {CC }}$ Rising	2.1	2.2	2.3	V
Ideal Diode Control						
$\Delta \mathrm{V}_{\text {FWD(REG) }}$	Forward Regulation Voltage (VINN - $\mathrm{V}_{\text {SENSE }}$)		2	15	28	mV
$\Delta V_{\text {DGATE }}$	External N-Channel Gate Drive $\left(V_{\text {DGATE1 }}-V_{\text {IN1 }}\right)$ and $\left(V_{\text {DGATE2 }}-V_{\text {D2SRC }}\right)$	$\begin{aligned} & \mathrm{IN}<7 \mathrm{~V}, \Delta \mathrm{~V}_{\text {FWD }}=0.15 \mathrm{~V} ; \mathrm{I}=0,-1 \mu \mathrm{~A} \\ & \mathrm{IN}=7 \mathrm{~V} \text { to } 18 \mathrm{~V}, \Delta \mathrm{~V}_{\text {FWD }}=0.15 \mathrm{~V} ; \quad \mathrm{I}=0,-1 \mu \mathrm{~A} \end{aligned}$	$\begin{gathered} 5 \\ 10 \end{gathered}$	$\begin{gathered} 7 \\ 12 \end{gathered}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & \bar{V} \\ & \text { V } \end{aligned}$
$\mathrm{I}_{\text {CPO(UP) }}$	CPOn Pull-Up Current	$\begin{aligned} & C P O=I N=D 2 S R C=2.9 \mathrm{~V} \\ & C P O=I N=\text { D2SRC }=18 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -60 \\ & -50 \end{aligned}$	$\begin{gathered} -100 \\ -90 \end{gathered}$	$\begin{aligned} & -130 \\ & -120 \end{aligned}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~A} \end{aligned}$
IDGATE(FPU)	DGATE $_{n}$ Fast Pull-Up Current	$\Delta V_{\text {FWD }}=0.2 \mathrm{~V}, \Delta V_{\text {DGATE }}=0 \mathrm{~V}, \mathrm{CPO}=17 \mathrm{~V}$		-1.5		A
IDGATE(FPD)	DGATE $_{n}$ Fast Pull-Down Current	$\Delta V_{\text {FWD }}=-0.2 \mathrm{~V}, \Delta \mathrm{~V}_{\text {DGATE }}=5 \mathrm{~V}$		1.5		A
IDGATE2(DN)	DGATE2 Off Pull-Down Current	D2OFF $=2 \mathrm{~V}, \Delta V_{\text {DGATE2 }}=2.5 \mathrm{~V}$	50	100	200	$\mu \mathrm{A}$
$\mathrm{t}_{\text {ON(DGATE) }}$	DGATE ${ }_{\text {I }}$ Turn-On Delay	$\Delta \mathrm{V}_{\text {FWD }}=0.2 \mathrm{~V}, \mathrm{C}_{\text {DGATE }}=10 \mathrm{nF}$		0.25	0.5	$\mu \mathrm{S}$
$\mathrm{t}_{\text {OFF(DGATE) }}$	DGATE $_{n}$ Turn-Off Delay	$\Delta V_{\text {FWD }}=-0.2 \mathrm{~V}, \mathrm{C}_{\text {DGATE }}=10 \mathrm{nF}$		0.2	0.5	$\mu \mathrm{s}$
$\mathrm{t}_{\text {PLH(DGATE2) }}$	D20FF Low to DGATE2 High			50	100	$\mu \mathrm{s}$

DEMO MANUAL DC2314A

SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Hot Swap Diode Control						
$\Delta V_{\text {SENSE(TH) }}$	Current Limit Sense Voltage Threshold $\left(V_{\text {SENSE }}{ }^{+}-V_{\text {SENSE }}{ }^{-}\right)$	$\begin{aligned} & \mathrm{FB}=1.3 \mathrm{~V} \\ & \mathrm{FB}=0 \mathrm{~V} \end{aligned}$	$\begin{gathered} 22.5 \\ 5.8 \end{gathered}$	$\begin{aligned} & 25 \\ & 8.3 \end{aligned}$	$\begin{aligned} & 27.5 \\ & 10.8 \end{aligned}$	mV mV
$\mathrm{V}_{\text {SENSE+(UVL) }}$	SENSE ${ }^{+}$Undervoltage Lockout	SENSE+ Rising	1.8	1.9	2	V
$\Delta \mathrm{V}_{\text {SENSE+(HYS) }}$	SENSE+ Undervoltage Lockout Hysteresis		10	50	90	mV
$\Delta V_{\text {HGATE }}$	External N-Channel Gate Drive (VGGATE - $\mathrm{V}_{\text {OUT }}$)	$\begin{array}{\|l} \mathrm{IN}<7 \mathrm{~V}, \mathrm{I}=0,-1 \mu \mathrm{~A} \\ \mathrm{IN}=7 \mathrm{~V} \text { to } 18 \mathrm{~V}, \mathrm{I}=0,-1 \mu \mathrm{~A} \end{array}$	$\begin{gathered} \hline 5 \\ 10 \end{gathered}$	$\begin{gathered} \hline 7 \\ 12 \end{gathered}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	V
$\triangle V_{\text {HGATE(H) }}$	Gate High Threshold (V $\mathrm{V}_{\text {HGATE }}$ - $\mathrm{V}_{\text {OUT }}$)		3.6	4.2	4.8	V
${ }^{\text {IHGATE(UP) }}$	External N-Channel Gate Pull-Up Current	Gate Drive On, HGATE = OV	-7	-10	-13	$\mu \mathrm{A}$
${ }^{\text {HGATE(DN) }}$	External N-Channel Gate Pull-Down Current	Gate Drive Off, OUT = 12V, HGATE = OUT +5V	1	2	4	mA
${ }^{\text {HGGATE(FPD) }}$	External N-Channel Gate Fast Pull-Down Current	Fast Turn-Off, OUT = 12V, HGATE = OUT +5V	100	200	350	mA

Input/Output Pin

$V_{\text {IN(TH })}$	ON, FB Pin Threshold Voltage	Voltage Rising	1.21	1.235	1.26	V
$V_{\text {ON(RESET })}$	ON Pin Fault Reset Threshold Voltage	ON Falling	0.57	0.6	0.63	V
$V_{\text {D2OFF(H,TH) }}$	D2OFF Pin High Threshold	D2OFF Rising	1.21	1.235	1.26	V
$V_{\text {TMR(H) }}$	FTMR, DTMR Pin High Threshold		1.198	1.235	1.272	V
$I_{\text {FMR(UP) }}$	FTMR Pull-Up Current	FTMR = 1V, in Fault Mode	-80	-100	-120	$\mu \mathrm{~A}$
$I_{\text {FTMR(DN })}$	FTMR Pull-Down Current	FTMR = 2V, No Faults	1.3	2	2.7	$\mu \mathrm{~A}$

Current Monitor

$G_{\text {IMON }}$	IMON Voltage Gain	$\Delta V_{\text {SENSE }}=20 \mathrm{mV}$ and 5 mV	99	100	101
$\mathrm{~V}_{\text {IMON(MAX) }}$	IMON Maximum Output Voltage	$\Delta V_{\text {SENSE }}=70 \mathrm{mV}, 5 \mathrm{~V} \leq$ SENSE $^{+} \leq 18 \mathrm{~V}$	3.5	$5 / \mathrm{V}$	
		$\Delta V_{\text {SENSE }}=35 \mathrm{mV}$, SENSE +2.9 V	V		
$\mathrm{R}_{\text {IMON(OUT) }}$	IMON Output Resistance	$\Delta V_{\text {SENSE }}=200 \mu \mathrm{~V}$	2.7	15	20

DEMO MANUAL DC2314A

OPGRATING PRINCIPLES

The LTC4236 is intended to build a combination of a diodeOR circuit for two rails and a common single Hot Swap path for inrush current limiting and overcurrent protection.

The LTC4236 regulates the forward voltage drop across the ideal diode MOSFET to ensure smooth current transfer from one supply to the other without oscillation. A fast ideal diode MOSFET turn-on reduces the load voltage droop during supply switchover. If the input supply fails or is shorted, a fast turn-off minimizes reverse current transients.
The Hot Swap fast acting current limit and internal timed circuit breaker protect circuit components when a shortcircuit fault occurs.

The Hot Swap section of the LTC4236 has independent on/off control (ON pin).
Each ideal diode MOSFET is activated from an individual charge pump source, and the second one has an additional on/off control (D2OFF pin).
The LTC4236 features an adjustable debounce time - the delay time between events when the controller is enabled and when it starts up.

The DC2314A-A (LTC4236-1) circuit features a latchoff circuit breaker, and DC2314A-B (LTC4236-2) provides automatic retry after a fault.

DEMO MANUAL DC2314A

BANANA JACKS WITH ASSOCIATED TURRETS

IN1 (E1, E2): First rail input.
IN2 (E5, E6): Second rail input.
GND (E3, E4, E7, E8, E14, E15, E21, E22): Power and control ground.
SENSE ${ }^{+}$(E16, E26): SENSE ${ }^{+}$power node.
OUT (E12, E13): Circuit output for load connection.

TURRETS

ON (E18): Hot Swap ON control input.
$\overline{\mathrm{EN}}$ (E19): Enable input.
D20FF (E20): Enable ideal diode 2.
PWRGD (E9): Power status output.
FAULT (E10): Fault status output.
CMON (E11): Current sense monitoring output.

JUMPERS

JP1 (ON_SEL): Hot Swap ON control signal selection.
JP2 (EN_SEL): ENABLE signal selection.
JP3 (DIODE2_OFF): Diode 2 OFF-ON control.
JP4 (PPRI_SEL): Prioritizer function selection.
JP5 (FB_SEL): Foldback circuit selection.
JP6 (DEBOUNCE): Debounce time selection.
JP8 (DSTAT2_SEL): DSTAT2 pin functionality selection.
JP9 (D20FF_SEL): D20FF control in the prioritizer mode.

LEDS

D3: Indicates PWRGD pin signal.
D4: Indicates FAULT pin signal.
D5: Indicates $\overline{\text { DSTAT1 }}$ pin signal.
D6: Indicates DSTAT2 pin signal.

PUICK START PROCEDURE

Demonstration circuit 2314A is easy to set up to evaluate LTC4236. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:
The DC2314A test includes independent test of the LTC4236 Hot Swap functionality and ideal diode functionality.

HOT SWAP FUNCTIONALITY TEST

This test is performed with singe rail operation when the output is provided through two series connected MOSFETs. One MOSFET functions as an ideal diode and the other one as a Hot Swap circuit switch.
The parameters of four different transients completely characterize the Hot Swap circuit performance. These transients are:

A Power-Up Without Any Additional Load

A Current Limit Operation After Successful Power-Up

A Power-Up With Shorted Output

A Power-Up With Pure Capacitive Load For Confirming Foldback Current Limiting

1. Initially, install the jumpers in the following positions, if the first ideal diode is used in the test:
JP1 ON_SEL in the position OFF
JP2 EN_SEL in the position EN JP3 DIODE2_OFF in the position OFF_EXT
If the second ideal diode is used:
JP1 ON_SEL in the position OFF
JP2 EN_SEL in the position EN
JP3 DIODE2_OFF in the position ON
Connect a +12 V power supply to turrets IN1 (or IN2) and GND. Do not load the output. Place the current probe on the +12 V wire, voltage probes on the OUT turret and a voltmeter on the CMON and GND turrets.

Provide an ON signal at the ON pin by changing the JP1 header position from the OFF position to 12V. Observe the transient. The output voltage rise time should be in the range of $8.3 \mathrm{~ms}-19.7 \mathrm{~ms}$. The PWRGD green LED D3 must light up. The voltmeter at the CMON turret should display an absolute value not larger than 15 mV . Turn off the rail using the ON_SEL jumper.
2. Connect a disabled electronic load to the OUT turret and GND. Turn on the rail and slowly increase the load current up to the circuit breaker threshold level. The current limit range should be from 8.91A to 11.11A. The voltage at the CMON turret should be in the range from 2.18 V to 2.83 V . Turn off the rail with the ON_SEL jumper.
3. Initially short the output with an external wire. Place the current probe on this wire. Turn on the rail and record the current shape. The maximum current should be in the 2.30A to 4.36 A range, and the voltage at the CMON turret should be in the range from 0.57 V to 1.09 V .
4. With no rail voltages and JP1 in the OFF position, connect a $1000 \mu \mathrm{~F}$ capacitor to the board output. Place a scope current probe on any wire between the board and the $1000 \mu \mathrm{~F}$ capacitor, and a voltage probe at the output. Provide +12 V to any input (IN1 or IN2) and enable the ON signal. Confirm that current limit is characterized by a foldback functionality.

IDEAL DIODE FUNCTIONALITY TEST

In this test, both ideal diodes are active and small variations in the input voltage forces one ideal diode to be off and the other ideal diode to be on.

Connect input turrets (IN1 and IN2) of each ideal diode with individual independent lab supplies. Adjusteach input voltage to +12 V with maximum possible accuracy. Place one voltmeter between IN1 and IN2 turrets to measure the difference between the two input voltages. Connect an electronic load to the output turret. Activate both rails and keep the load around 1 A to 3 A. Play with the input voltage levels and be sure that when the difference between input voltages exceeds 28 mV , only one rail feeds the load.

DEMO MANUAL DC2314A

PUICK START PROCEDURE

Figure 1. Measurement Equipment Setup

SCHEMATIC DIAGRAM

DEMO MANUAL DC2314A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT'TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

> Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

