$\mathcal{C Y}$ IITER DEMO MANUAL DC2345A

 DESCRIPTIOn

 DESCRIPTIOn}

Demonstration circuit 2345A is a 60V synchronous 4-switch buck-boost LED controller with spread spectrum featuring the LT®8391 LED driver. It accepts an input voltage from 4 V to 60 V and drives a single string of LEDs up to 25 V at 2 A . DC2345A runs at 400 kHz switching frequency without spread spectrum, but spread spectrum frequency modulation (SSFM) can be enabled with a simple jumper. SSFM spreads the switching frequency to fsw $\pm 15 \%$ for reduced EMI.

The LT8391 has a wide input voltage range down to 4 V and up to 60 V . It has adjustable switching frequency between 150 kHz and 600 kHz . There is a simple jumper option for external frequency synchronization, spread spectrum frequency modulation, or neither.

The LT8391 can be PWM dimmed with an external PWM signal and an internally-generated PWM signal. DC2345A has a jumper that can e set to switch between internallygenerated PWM signal, externally-generated PWM signal, and no PWM signal (100% on). It can be analog dimmed with a control voltage on either of its two control pins. LT8391 features both open LED and short LED (LED+ to GND) protection as well as a fault output flag.
When run with both PWM dimming and spread spectrum, the spread spectrum aligns itself with the PWM signal for flicker-free operation.

Small ceramic input and output capacitors are used to save space and cost. The board is designed with capacitors on
both sides of the synchronous switches for a reduction in radiated EMI. The open LED overvoltage protection uses the IC's constant voltage regulation loop to regulate the output to approximately 29.7 V if the LED string is opened although it may reach 32V peak during transient from running LEDs to open. There is a protection diode from LED+ to GND to prevent negative ringing during a short-circuit with long wires.

Undervoltage lockout can be adjusted on the circuit with a few simple resistor choices.

There is an EMI filter on the input of DC2345A. This filter has a $3.2 \mu \mathrm{H}$ inductor and two $4.7 \mu \mathrm{~F}$ capacitors. It is effective in reducing the conducted EMI in the AM band to pass CISPR25 class 5 regulations. When run with SSFM, DC2345A has low conducted EMI.

The LT8391 data sheet gives a complete description of the part, operation and applications information. The data sheet must be read in conjunction with this Demo Manual for demonstration circuit DC2345A. The LT8391EFE is assembled in a 28 -lead plastic TSSOP (FE) package with a thermally enhanced ground pad. Proper board layout is essential for maximum thermal performance. See the data sheet section 'Layout Considerations'.

Design files for this circuit board are available at http://www.linear.com/demo/DC2345A

[^0]
DEMO MANUAL DC2345A

PGRFORMARCE SUMMARY Speciicictions are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITIONS	MIN	TYP	MAX
Input Voltage EMIVIN Range	Operating $\mathrm{V}_{\text {LED }}=25 \mathrm{~V}$	4 V		60 V
Switching Frequency	R3 $=100 \mathrm{k}$		400kHz	
$\underline{\text { LED }}$	$\mathrm{R} 1=0.05 \Omega 7.0 \mathrm{~V}<\mathrm{PV}_{\text {IN }}<60 \mathrm{~V} \mathrm{~V}_{\text {LED }}=25 \mathrm{~V}$		2.0 A	
$V_{\text {LED }}$ range	$\mathrm{R} 5=1 \mathrm{M} \mathrm{R6}=34.8 \mathrm{k}$			26 V
Open LED Voltage $\mathrm{V}_{\text {OUT }}$	$\mathrm{R} 5=1 \mathrm{M} R 6=34.8 \mathrm{k}$		29.7V	
Typical Efficiency (100\% PWM DC)	$P \mathrm{~V}_{\text {IN }}=14 \mathrm{~V} \mathrm{~V}_{\text {LED }}=25 \mathrm{~V} \mathrm{I}_{\text {LED }}=2.0 \mathrm{~A}$		97\%	
Internally-Generated PWM Dimming Range	Operating JP3 = INT JP1 = INT	1/128		100\%
Internally-Generated PWM Dimming Frequency	Operating JP3 = INT JP1 = INT R16 = 200k		200 Hz	
Peak Switch Current Limit Boost Region	$\mathrm{R} 2=0.004 \Omega$		12.5A	
Peak Switch Current Limit Buck Region	$\mathrm{R} 2=0.004 \Omega$		12.5A	

PUICK START PROCEDURE

Demonstration circuitDC2345A is easy to set up to evaluate the performance of the LT8391 Follow the procedurebelow:

1. With power off, connect a string of LEDs that will run with forward voltage less than or equal to 25 V (at 2 A) to the LED+ and GND banana jacks on the PCB as shown in Figure 1.
2. Connect the EN/UVLO terminal to GND.
3. Set JP1 to EXT/ON and JP3 to ON for 100\% always-on LED operation. Set JP2 to NO SPREAD/SYNC to run without SSFM or external synchronization.
4. With power off, connect the input power supply to the EMIVIN and GND banana jacks. Make sure that the DC input voltage will not exceed 60V.
5. Turn the input power supply on and make sure the voltage is between 4 V and 60 V for proper operation.
6. Release the EN/UVLO-to-GND connection.
7. Observe the LED string running at the programmed LED current.
8. To change the brightness with analog dimming, simply attach a voltage source to either the CTRL1 or CTRL2 terminal and set the voltage between OV and 1.5 V . See data sheet for details.
9. To change brightness with external PWM dimming, set JP1 to EXT/ON and JP3 to EXT. Attach a 3 V rectangular waveform with varying duty cycle to the PWM terminal.
10. To change brightness with internally-generated PWM dimming, set JP1 to INT and JP3 to INT. Adjust the setting of the VR1 variable resistor with a small flathead screwdriver to toggle between 0\% and 100\% PWM dimming duty cycle in $1 / 128$ steps.
11. To enable spread spectrum frequency modulation, set JP2 to SPREAD ON.

PUICK START PROCEDURE

Figure 1. Test Procedure Setup Drawing for DC2345A

DEMO MANUAL DC2345A

PUICK START PROCEDURE

Figure 2. DC2345A Efficiency and LED Current Versus Input Voltage for 25V 2A LED Load. Efficiency Peaks at 98\% and Doesn't Stray Far from That Peak, Ranging from 95\% to 97\% Throughout the Typical 9V-16V Automotive Input Range. Also Shown, the LT8391 Peak Inductor Current Limit Can Maintain Stable Output with Reduced Output Power at Low $V_{I N}$.

Figure 3. Infinite-Persist Scope Traces Show PWM Dimming and SSFM Working Together for Flicker-Free Brightness Control with Both Externally and Internally Generated PWM Dimming.

DEMO MANUAL DC2345A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	2	C1, C2	CAP., CER., 4.7 μ F, X7S, 100V, 10\%, 1206	AVX, 12061Z475KAT2A
2	2	C3, C4	CAP., CER., 10山F, X5R, 50V, 10\%, 1206	MURATA, GRM31CR61H106KA12L
3	1	C5	CAP., CER., 1 FF, X5R, 50V, 10\%, 0603	MURATA, GRM188R61H105KAALD
4	1	C6	CAP., CER., 1 $\mu \mathrm{F}, \mathrm{X7S}, 100 \mathrm{~V}, 10 \%$, 0805	TDK, C2012X7S2A105K125AB
5	1	C7	CAP., CER., $0.47 \mu \mathrm{~F}, \mathrm{X} 7 \mathrm{R}, 16 \mathrm{~V}, 10 \%, 0603$	MURATA, GRM188R71C474KA88D
6	3	C8, C11, C12	CAP., CER., $0.1 \mu \mathrm{~F}, \mathrm{X7R}, 16 \mathrm{~V}, 10 \%, 0603$	MURATA, GRM188R71C104KA01D
7	2	C9, C17	CAP., CER., 10nF, X7R, 16V, 10\%, 0603	AVX, 0603YC103KAT2A
8	1	C10	CAP., CER., 4.7 μ F, X5R, 10V, 10\%, 0603	MURATA, GRM188R61A475KE15D
9	1	L1	IND., $4.7 \mu \mathrm{H}, 13.00 \times 12.80 \mathrm{~mm}$	WURTH ELEKTRONIK, 7443550480
10	1	M1	MOSFET, 60V, TDSON-8	INFINEON, BSC067N06LS3
11	1	M2	MOSFET, 60V, TDSON-8	INFINEON, BSC100N06LS3
12	2	M3, M4	MOSFET, 40V, TDSON-8	INFINEON, BSC093N04LS
13	1	M5	MOSFET, P-CH, 40V, POWERPAK-1212-8	VISHAY, SI7611DN-T1-GE3
14	1	R1	RES,. SENSE, $0.05 \Omega, 1 \mathrm{~W}, 1 \%, 2010$	T Electronics, LRC-LR2010LF-01-R050F
15	1	R2	RES,. SENSE, $0.004 \Omega, 1 \mathrm{~W}, 1 \%, 2010$	ROHM, PMR50HZPFV4L00
16	1	R3	RES, CHIP, 100k, 1/10W, 5\%, 0603	VISHAY, CRCW0603100KOJNEA
17	1	R4	RES, CHIP, 2.2k, 1/10W, 1\%, 0603	VISHAY, CRCW06032K20FKEA
18	1	R5	RES, CHIP, 1M, 1/10W, 1\%, 0603	VISHAY, CRCW06031M00FKEA
19	1	R6	RES, CHIP, 34.8k, 1/10W, 1\%, 0603	VISHAY, CRCW060334K8FKEA
20	1	R9	RES, CHIP, 5.1, 1/10W, 5\%, 0603	VISHAY, CRCW06035R10JNEA
21	1	R26, R27	RES, CHIP, 10ת, 1/10W, 5\% 0603	VISHAY, CRCW060310ROFKEA
22	1	U1	I.C., LED CONTROLLER, TSSOP28FE-EA	LINEAR TECH., LT8391EFE\#PBF
Optional Electrical Components				

Optional Electrical Components

1	1	C13	CAP., ALUM., $33 \mu \mathrm{~F}, 63 \mathrm{~V}, 20 \%, 8 \times 10.2 \mathrm{~mm}$	SUN ELECTRONIC INDUSTRIES CORPORATION, 63CE33BS
2	2	C14, C15	CAP., CER., 4.7 $\mu \mathrm{F}, \mathrm{X7S}$, 100V, 10\%, 1206	AVX, 12061Z475KAT2A
3	1	C16	CAP., CER., $0.1 \mu \mathrm{~F}, \mathrm{X} 5 \mathrm{R}, 100 \mathrm{~V}, 10 \%, 0402$	MURATA, GRM155R62A104KE14D
4	0	C18, C19, C20, C21 (0PT)	CAP., OPTION, 0603	
5	1	D1	DIODE, SCHOTTKY, 60V, 1A, SOD323F	NXP, PMEG6010CEJ,115
6	0	D2 (OPT)	DIODE, ZENER, 5.1V, 250MW, SOD323	CENTRAL SEMI., CMDZ5231B TR
7	0	FB1 (OPT)	CHIP BEAD, OPTION, 1206	
8	1	L2	IND., $3.2 \mu \mathrm{H}, 13.00 \times 12.80 \mathrm{~mm}$	WURTH ELEKTRONIK, 7443550320
9	3	R10, R11, R15	RES, CHIP, 100k, 1/10W, 5\%, 0603	VISHAY, CRCW0603100KOJNEA
10	1	R7	RES, CHIP, 499k, 1/10W, 1\%, 0603	VISHAY, CRCW0603499KFKEA
11	1	R8	RES, CHIP, 221k, 1/10W, 1\%, 0603	VISHAY, CRCW0603221KFKEA
12	0	$\begin{aligned} & \text { R12, R13, R14, R17, R18, } \\ & \text { R19, R20, R23 (OPT) } \end{aligned}$	RES., OPTION, 0603	
13	1	R16	RES, CHIP, 200k, 1/10W, 1\%, 0603	VISHAY, CRCW0603200KFKEA
14	3	R21, R24, R25	RES, CHIP, 0 , 1/10W, 1\%, 0603	VISHAY, CRCW06030000Z0EA
15	1	R22	RES, CHIP, 91k, 1/10W, 5\%, 0603	VISHAY, CRCW060391K0FKEA
16	1	VR1	TRIMMER., 100k, 0.25W, SMD	Bourns, 3314J-1-104E

DEMO MANUAL DC2345A

PARTS UST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Additional Hardware				
1	4	E1, E2, E10, E11	TEST POINT, TURRET, .094" MTH HOLE	MILL-MAX, 2501-2-00-80-00-00-07-0
2	9	E3, E4, E5, E6, E7, E8, E9, E12, E13	TEST POINT, TURRET, .061" MTG. HOLE	MILL-MAX, 2308-2-00-80-00-00-07-0
3	1	JP1	CONN., HEADER, $1 \times 3,2 \mathrm{~mm}$	WURTH ELEKTRONIK, 62000311121
4	2	JP2, JP3	CONN., HEADER, $2 \times 3,2 \mathrm{~mm}$	WURTH ELEKTRONIK, 62000621121
5	3	XJP1, XJP2, XJP3	SHUNT, 2mm	WURTH ELEKTRONIK, 60800213421
6	4	J1, J2, J3, J4	CONN., JACK, BANANA, Non-Insulated, 0.218"	KEYSTONE, 575-4

SCHEMATIC DIAGRAM

Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the intercoonnection of its circuits as described herein will not infringee on existing patent tights.

DEMO MANUAL DC2345A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT'TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

> Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MIC2870YFT EV ADP8860DBCP-EVALZ LM3404MREVAL ADM8843EB-EVALZ TDGL014 ISL97682IRTZEVALZ LM3508TLEV EA6358NH MAX16826EVKIT MAX16839EVKIT+ TPS92315EVM-516 MAX1698EVKIT MAX6956EVKIT+ OM13321,598 DC986A DC909A DC824A STEVAL-LLL006V1 IS31LT3948-GRLS4-EB 104PW03F PIM526 PIM527 MAX6946EVKIT+ MAX20070EVKIT\# MAX21610EVKIT\# MAX20090BEVKIT\# MAX20092EVSYS\# PIM498 AP8800EV1 ZXLD1370/1EV4 MAX6964EVKIT MAX25240EVKIT\# MAX25500TEVKITC\# MAX77961BEVKIT06\# 1216.1013 TPS61176EVM-566 TPS61197EVM TPS92001EVM-628 $\underline{1270} \underline{1271.2004} \underline{1272.1030} \underline{1273.1010} \underline{1278.1010} \underline{1279.1002} \underline{1279.1001} \underline{1282.1000} \underline{1293.1900} \underline{1293.1800} \underline{1293.1700} \underline{1293.1500}$

[^0]: $\mathbf{L T}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

