DESCRIPTIOn

Demonstration Circuit 2355A features the LTC®3130, a wide input voltage, wide output voltage operating range, high efficiency, low noise monolithic DC/DC buck-boost converter.
The LTC3130 operates from input voltages of 2.4 V to 25 V . The demo board has been designed with the output voltage setto 5V. The LTC3130 incorporates a proprietary low noise switching algorithm which optimizes efficiency with input voltages above, below or equal to the output voltage and ensures seamless transitions between operating modes.

The DC2355A demo board has two user selectable operating modes: Burst Mode ${ }^{\circledR}$ operation and Fixed Frequency PWM (JP2). In PWM Mode, the LTC3130 operates at 1.2 MHz to allow high efficiency while minimizing the solution footprint.

The LTC3130 features pin selectable 850mA/450mA average inductor current limit. To setthe current limitto 850 mA set jumper JP1 to "HIGH". For 450 mA current limit set JP1 to "LOW". The lower current limit function is useful when operating from weak, or current limited sources.
A PGOOD open drain output is provided and is pulled up to $\mathrm{V}_{\text {OUT }}$. This output asserts low when $\mathrm{V}_{\text {OUT }}$ is below regulation.
An accurate RUN threshold can be set to enable the converter at a desired input voltage. The DC2355A demo board is set up to use R10 in conjunction with R11 to set this
threshold. Jumper JP4 is provided to pull this input up to $\mathrm{V}_{\text {IN }}$ or tie it directly to GND. See the data sheet for details. Maximum power point control (MPPC) allows for simple optimization of power transfer between the converter and a non-ideal supply such as a photovoltaic panel or another high impedance source. The DC2355A demo board can be set to operate in MPPC mode by setting jumper JP3 to "ON", removing R8 and populating R7 and R9. In most applications this function can also be realized, often with better efficiency, by using the accurate RUN comparator functionality. See the data sheet for details.

The LTC3130 allows the internal $\mathrm{V}_{\text {CC }}$ rail to be fed externally from the EXTV ${ }_{\text {CC }}$ pin. In some applications the efficiency of the converter can be improved by allowing $\mathrm{V}_{\text {CC }}$ to be back-fed from a supply, such as $V_{\text {OUT }}$. Setting the EXTV ${ }_{C C}$ jumper (JP5) on the demo board to "EXT" back-feeds V ${ }_{C C}$ through EXTV ${ }_{\text {CC }}$ from $V_{\text {OUT }}$. Setting this jumper to internal ("INT") powers $V_{\text {CC }}$ from the $V_{\text {IN }}$ input. See the data sheet for additional details.

The LTC3130/LTC3130-1 data sheet has detailed information about the operation, specifications, and applications of the device. The data sheet should be read in conjunction with this quick start guide.

Design files for this circuit board are available at http://www.linear.com/demo/DC2355A

$\overline{\boldsymbol{L T}}$, LT, LTC, LTM, Linear Technology, the Linear logo and Burst Mode operation are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY Specifications are at $T_{A}=25^{\circ} \mathrm{C}$

Input Voltage Range	2.4 V to 25V
$V_{\text {OUT }}$	5 V
I OUT (see Note 1)	600 mA
Efficiency	See Figure 1

[^0]
DEMO MANUAL DC2355A

PUICK START PROCEDURE

Using short twisted pair leads for any power connections and with all loads and power supplies off, refer to Figure 4 for the proper measurement and equipment setup. The power supply (PS1) should not be connected to the circuit until told to do so in the procedure below.
When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilIoscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the $\mathrm{V}_{\text {IN }}$ or $\mathrm{V}_{\text {OUT }}$ and GND terminals (see Figure 5), or by using an oscilloscope probe tip jack.

1. Jumper and PS1 settings to start:
PS1:
OFF
JP1: ILIM HIGH
JP2: MODE FIXED FREQ
JP3: MPPC OFF
JP4: RUN ON
JP5: EXTV ${ }_{\text {CC }} \quad$ EXT
2. With power OFF connect the power supply (PS1) as shown in Figure 4. If accurate current measurements are desired (for efficiency calculation for example) then connect ammeters in series with supplies as shown. The ammeters are not required however.

Figure 1. DC2355A Typical Efficiency vs Load with and without Externally Feeding VCC
3. Connect a 500 mA load (10Ω) to $\mathrm{V}_{\text {OUT }}$ as shown in Figure 4.
4. Turn on PS1 and slowly increase the voltage until the voltage at $\mathrm{V}_{\text {IN }}$ is 5 V .
5. Verify $\mathrm{V}_{\text {OUT }}$ is $\sim 5 \mathrm{~V}$.
6. V_{IN} can now be varied between 2.4 V and 25 V . The load may need to be reduced for $\mathrm{V}_{I N}<5 \mathrm{~V}$ for $\mathrm{V}_{\text {OUT }}$ to remain in regulation.
7. The load can be varied. The maximum load is a function of V_{IN} and the device current limit. Consult the data sheet for more information on output current vs $V_{\text {IN }}$.
8. For operation in Burst Mode, move jumper JP2 to "BURST MODE". See the data sheet for more information on Burst Mode operation.
9. For operation with the lower current limit move jumper JP1 to "LOW". Output current capability is reduced with the lower current limit. See the data sheet for more information.
10. For operation with $\bigvee_{C C}$ powered from $V_{I N}$, move jumper JP5 to "INT".

NOTE: If $\mathrm{V}_{\text {Out }}$ drops out of regulation, check to be sure the maximum load has not been exceeded, and that $V_{\text {IN }}$ is not below the minimum value for regulation (see data sheet).

Figure 2. DC2355A Step Load Response, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$. Load Step Is from 100 mA to 400 mA

DEMO MANUAL DC2355A

PUICK START PROCEDURE

Figure 3. DC2355A Thermal Performance. $\mathrm{V}_{\mathbf{I N}}=12 \mathrm{~V}$, Load $=600 \mathrm{~mA}$

Figure 4. Proper Measurement Equipment Setup

Figure 5. Measuring Input or Output Ripple

DEMO MANUAL DC2355A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	3	C1, C5, C6	CAP., 1 $\mu \mathrm{F}$ 50V 10\% X7R 0805	MURATA, GRM21BR71H105KA12L
2	1	C2	CAP CER 10 $\mu \mathrm{F} 50 \mathrm{~V}$ X7R 1210	MURATA, GRM32ER71H106KA12L
3	2	C7, C8	CAP CER $22 \mu \mathrm{~F} 25 \mathrm{~V}$ X7R 1210	MURATA, GRM32ER71E226KE15L
4	2	C9, C10	CAP CER $0.1 \mu \mathrm{~F} 50 \mathrm{~V}$ X7R 0603	MURATA, GRM188R71H104KA93D
5	1	C11	CAP., 4.7 4 F 6.3 V 10\% X5R 0603	MURATA, GRM188R60J475KE19D
6	1	C12	CAP., 4.7 ${ }^{\text {F 5 50V 10\% X5R } 0805}$	MURATA, GRM21BR61H475KE51L
7	1	C13	CAP CER 22pF 50V C0G 0603	MURATA, GRM1885C1H220JA01D
8	1	R1	RES 1M, 1/10W 1\% 0402	VISHAY, CRCW04021M00FKED
9	1	R2	RES 249k, 1/16W 1\% 0402	VISHAY, CRCW0402249KFKED
10	1	R3	RES 49.9, 1/10W 1\% 0402	VISHAY, CRCW040249R9FKED
11	1	R4	RES SMD 75k 1% 1/10W 0402	VISHAY, CRCW040275KOFKED
12	4	R5, R6, R8, R10	RES SMD 2M 2 1\% 1/16W 0402	VISHAY, CRCW04022M00FKED
13	1	L1	INDUCTOR, $10 \mu \mathrm{H}, \pm 20 \%$	COILCRAFT, XAL4040-103ME
14	1	U1	25V, 600mA BUCK BOOST DC/DC CONVERTER	LINEAR TECHNOLOGY, LTC3130EUDC\#PBF

Additional Demo Board Circuit Components

15	0	C3, C15	CAP, 1210 (OPT)	
16	0	C4	CAP ALUM 220 4 F 35V 20\% SMD (OPT)	PANASONIC, EEE-FP1V221AP
17	0	C14	CAP, 0603 (OPT)	
18	0	R7, R9, R11	RES, 0402 (OPT)	
19	0	D1	DIODE SCHOTTKY 40V 2A S0D123 (OPT)	ROHM, RB068M-40TR

Hardware: For Demo Board Only

20	6	E1-E6	TP, TURRET, 0.094", PBF	MILL-MAX, 2501-2-00-80-00-00-07-0
21	5	JP1-JP5	CONN., HEADER, $1 \times 3,2 \mathrm{~mm}$	SULLINS, NRPN031PAEN-RC
22	5	XJP1-XJP5	SHUNT, 2mm	SAMTEC, 2SN-BK-G
23	4		STANDOFF, NYLON, SNAP-ON, 0.500"	KEYSTONE, 8833

DEMO MANUAL DC2355A

SCHEMATIC DIAGRAM

DEMO MANUAL DC2355A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.

If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT'TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

> Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

[^0]: Note 1: The demo board output current is a function of $V_{\text {IN }}$. Please refer to the data sheet for more information.

