DESCRIPTION

Demonstration circuit 2376A features the LTC ${ }^{\circledR} 2664$, 4-channel 16 -Bit/12-Bit $\pm 10 \mathrm{~V} \mathrm{~V}_{\text {OUT }}$ SoftSpan ${ }^{\text {TM }}$ DACs with $10 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ max reference in a $5 \mathrm{~mm} \times 5 \mathrm{~mm}$ QFN package. This device features per-channel SoftSpan configuration with five output ranges: 0 V to 5 V , 0 V to $10 \mathrm{~V}, \pm 2.5 \mathrm{~V}, \pm 5 \mathrm{~V}$, and $\pm 10 \mathrm{~V}$. A toggle feature allows any or all DACs to switch between two programmed codes viaa single SPI command or by the TGP input pin. The versatile SPI interface can operate on any logic level between 1.71 V and 5.5 V , for easy interface to lower voltage microcontrollers or FPGAs.

DC2376A-A is populated with the 16-bit version of the LTC2664. DC2376A-B is populated with the 12-bit version for lower resolution applications.

Design files for this circuit board are available at

 http://www.linear.com/demo/DC2376A$\boldsymbol{\mathcal { T }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and SoftSpan and QuikEval are trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

Figure 1. Connection Diagram

DEMO MANUAL DC2376A

DUICK START PROCEDURE

Download and install QuikEval ${ }^{\text {TM }}$ from:
http://www.linear.com/designtools/software/\#Data
Connect a DC590 controller or DC2026 Linduino with DC590 emulatorfirmwareto the DC2376A with the supplied ribbon cable. Connect low-noise analog power supplies as shown in Figure 1. $\mathrm{A} \pm 15 \mathrm{~V}$ supply will allow all of the SoftSpan ranges to be used, refer to the LTC2664 data sheet for other supply options if not all SoftSpan ranges are used.

Connect the controller to the host PC's USB port and run QuikEval. The DC2376A software will be downloaded and installed, after which a jumper setting window will appear as shown in Figure 2. The default settings are internal reference, SoftSpan operation with 0 V to 5 V range, 0 V output on power-up. If the jumpers on the board have been changed to a different configuration, select the appropriate options in the pull-down menus to match the board.

Click OK and the main dialog will appear. The control panel gives access to all of the LTC2664's functionality including per-channel SoftSpan ranges, toggling, Power-Down, etc. Detailed instructions are provided in the Help menu.

Figure 2. Jumper Settings Dialog

PUICK START PROCEDURE

Figure 3. Main Control Panel

DEMO MANUAL DC2376A

PUICK START PROCEDURE

External Connections

J1: Interface connector to DC590 controller or Linduino. Provides OVP power, SPI interface, and board identification.
\mathbf{V}^{-}, GND, \mathbf{V}^{+}: Analog supplies, connected to the LTC2664 V^{+}and V^{-}pins. Nominally $\pm 15 \mathrm{~V}$ for operation in all SoftSpan ranges. Refer to the data sheet for other supply configurations.

GND: Four additional ground posts and exposed ground plane around board edge allow solid connection to prototype circuitry and measurement equipment.
VCC: Analog supply voltage. Normally supplied by an onboard LT1761-5 fixed 5V regulator that is powered from the V^{+}supply. For single 5 V supply applications, VCC may be tied directly to V^{+}and supplied with 4.5 V to 5.5 V .
IOVCC: Digital interface power. No connection to this pin is required when used with a DC590 or Linduino controller. If another controller is used, connect to digital supply that powers the SPI bus controller (1.71 to 5.5 V).
REF: Connection to the REF pin. In internal reference mode, the reference voltage may be monitored at this point. Placing REF_SEL jumper in the EXT position allows an external reference to be connected to this point.

MUX: Monitor Mux output. Allows surveying the DAC outputs, as well as the auxiliary MUX inputs, $\mathrm{V}^{+}, \mathrm{V}^{-}$REF, REFLO, and an internal temperature sensor, under software control. Must be measured with a high impedance meter (output impedance is nominally $2.1 \mathrm{k} \Omega$).
VOUTO to VOUT3: DAC outputs.
MUXINO to MUXIN3: Analog Multiplexer Auxiliary Inputs.
CLR: Asynchronous clear input (pulled high to OVP with a 4.99 k resistor). Pull to ground to reset the DAC to the power-on reset value (determined by MSPx pins.)
TGP: Toggle input (pulled high to OVP with a 4.99 k resistor). A high level on this pin enables software toggling. See data sheet for a complete description of toggle operation.
 falling edge of $\overline{\mathrm{LDAC}}$, DAC outputs will be updated with the contents of the input registers. If $\overline{C S} / L D$ is low when $\overline{\mathrm{LDAC}}$ goes low, the DAC registers are updated after $\overline{\mathrm{CS}} /$ LD returns high.
OVRTMP: Overtemperature pin (pulled high to IOVCC with a 4.99 k resistor). The LTC2664 pulls this pin low if the die temperature exceeds approximately $160^{\circ} \mathrm{C}$. It is released on the next rising edge of $\overline{\mathrm{CS}} / \mathrm{LD}$.

DEMO MANUAL DC2376A

PUICK START PROCEDURE

Jumpers

REF_SEL (JP1): Selects internal or external reference mode. (See data sheet description of REFCOMP pin.)
MSPO, MSP1, MSP2 (JP2, JP3, JP4): Manual Span control. Setting all jumpers to the 1 position (Default) selects SoftSpan operation, with a power-up default span of 0 V to 5 V , and reset to Zero-Scale. Other options are listed in Table 1.

LEDs

$\overline{\text { OVRTMP: Lights when OVRTMP pin asserts, indicating an }}$ overtemperature state. (Note that LED will light if positive analog supply is present and OVP is not. OVP is normally supplied by the controller.)

Test Points

The SPI bus is available on a row of through-hole test points next to J 1 that may be used to monitor the bus or to drive the bus with an external controller.

EEGND, WP: For factory use only.

Table 1

MSP2	MSP1	MSPO	OUTPUT RANGE	RESET CODE	MANUAL SPAN	SoftSpan
0	0	0	$\pm 10 \mathrm{~V}$	Mid-Scale	X	
0	0	1	$\pm 5 \mathrm{~V}$	Mid-Scale	X	
0	1	0	$\pm 2.5 \mathrm{~V}$	Mid-Scale	X	
0	1	1	0 V to 10 V	Zero-Scale	X	
1	0	0	0 V to 10 V	Mid-Scale	X	
1	0	1	0 V to 5 V	Zero-Scale	X	
1	1	0	0 V to 5 V	Mid-Scale	X	
1	1	1	0 V to 5 V	Zero-Scale		X

DEMO MANUAL DC2376A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	3	C1, C6, C7	CAP, X5R, 10 ${ }^{\text {F }} 25 \mathrm{~V}, 10 \%, 1206$	MURATA, GRM31CR61E106KA12L
2	9	C2, C3, C8, C9, C11 T0 C15	CAP, X7R, 0.1 ¢F 25V, 10\%, 0603	MURATA, GRM188R71E104KA01D
3	1	C5	CAP, X7R, $0.01 \mu \mathrm{~F} 25 \mathrm{~V}, 10 \%, 0603$	MURATA, GRM188R71E103KA01D
4	2	D1, D2	DIODE, SCHOTTKY DUAL 30V, SOT23-3	DIODES INC, BAT54C-7-F
5	23	E1 T0 E17, E22, E24, E28 T0 E31	TURRET, TESTPOINT 0.064"	MILL-MAX, 2308-2-00-80-00-00-07-0
6	4	JP1, JP2, JP3, JP4	HEADER, 2MM SINGLE STR 3POS	SULLINS, NRPN031PAEN-RC
7	1	J1	CONN, HEADER 14POS 2MM VERT GOLD	MOLEX, 87831-1420
8	1	LED1	LED, RED, LED-ROHM-SML-010VT	ROHM, SML-010VTT86L
9	1	Q1	MOSFET, N-CH 60V 300MA SOT-23	VISHAY SILICONIX, 2N7002K-T1-E3
10	0	R1, R2, R10	RES, 0603	OPT
11	8	R3 T0 R9, R12	RES, CHIP, 4.99k, 1/10W, 1\% 0603	VISHAY, CRCW06034K99FKEA
12	1	R11	RES, CHIP, 1k, 1/10W, 1\% 0603	VISHAY, CRCW06031K00FKEA
13	1	U2	IC, LT1761ES5-5, SOT23-5	LINEAR TECHNOLOGY, LT1761ES5-5\#PBF
14	1	U3	IC, 24LC025-I/ST, TSSOP8	MICROCHIP, 24LCO25-I/ST
DC2376A-A Required Circuit Components				
2	1	U1	IC, 16-BIT, QFN32UH-5X5	LINEAR TECHNOLOGY, LTC2664IUH-16
DC2376A-B Required Circuit Components				
2	1	U1	IC, 12-BIT, QFN32UH-5X5	LINEAR TECHNOLOGY, LTC2664IUH-12

SCHEMATIC DIAGRAM

DEMO MANUAL DC2376A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

