LTC6419 Dual Differential Amplifier/ADC Driver

DESCRIPTIOn

Demonstration circuit 2473A features the LTC®6419 Dual Differential Amplifier/ADC Driver. It incorporates a variety of passive components to support configurations for varied applications. These fully-differential amplifiers accept single-ended or differential input with almostno difference in distortion performance.
The LTC6419 is a high speed dual differential amplifier with superior distortion and low noise, suitable for demanding communications transceivers, cellular base-stations and other high speed signal chain applications.

ADDITIONAL INFORMATION

The DC2473A demo board is ready for use as-is and is designed for ease of use and with minimum modification. The demo board has features that can be accessed by adding, removing or changing components on the board to configure for single-ended and/or differential inputs and outputs.
By default, the board is configured to have dual single-ended inputs with transformers, $\mathrm{J} 4\left(\mathrm{IN1}^{-}\right)$and $\mathrm{J} 6\left(\mathrm{IN2}^{-}\right)$and dual single-ended outputs with transformers, $\mathrm{J}\left(\right.$ (OUT1 $\left.^{-}\right)$and J 7 (OUT2 $^{-}$). Each of these ports is matched to 50Ω impedance to facilitate direct connections to testequipment.

Driving the Inputs DC-Coupled

It is possible to configure the DC2473A inputs differentially with DC coupling. Transformers and components at locations $\mathrm{T} 1, \mathrm{~T} 3, \mathrm{C} 2, \mathrm{C} 6, \mathrm{C} 13$ and C 17 connections should be replaced with 0Ω resistors. The inputs are now DC-coupled and can be driven single-ended or differentially (resistor values may be changed to balance the source impedances).

Changing the Output Common-Voltage

The turrets marked VOCM1 and VOCM2 (E2 and E4) control the output (and input, if AC-coupled) common mode voltage of the DC2473A. This function can be used to level-shift the DC output voltage for optimum system performance. If used for this purpose, output capacitors
$\mathrm{C3}, \mathrm{C7}, \mathrm{C14}$ and C 18 can be replaced by 0Ω resistors to allow the DC bias to reach the outputs.
By default, VOCMA and VOCMB are self-biased and float to a typical 1.25 V on each of the common-mode pins (with $\mathrm{V}^{+}=5 \mathrm{~V}$). The VOCMA and VOCMB voltage of the two amplifiers can be set independently with external DC supply voltage source, or on board voltage dividers R18/ R19 and R37/R38.

Enable (Shutdown)

Jumpers JP1 and JP2 control the enable functions of amplifiers A and B. When set to the EN position, the part will be on and draw normal operating current. In the DIS position, the part will be in shutdown and draw a very small amount of leakage current.

Ground and $V_{\text {CC }}$ Connections

DC2473A GND turret is not only connected to V^{-}of the LTC6419, it also serves as the demo board's ground. For best result, a low impedance return path to the power supply from GND is recommended. Short, low impedance wires to the V^{+}and GND connectors of DC2473A will yield the best performance from the LTC6419.

Schematic Notes

For a 50Ω external load, transformer T2 or T4 and the series 100Ω resistors (R7, R9 or R26, R28) present each amplifier with a 400Ω load impedance. These resistors produce a 6 dB voltage drop when driving loads.
Because the unmodified amplifier has OdB voltage gain, and each transformer adds approximately 1 dB insertion loss, the total unmodified demo board will measure approximately 8 dB insertion loss from the input port (J4 or $\mathrm{J6}$) to the output port (J 1 or J7).

Design files for this circuit board are available at http://www.linear.com/demo/DC2473A

[^0]
DEMO MANUAL DC2473A

PUICK START PROCEDURE

Table 1 shows the function of each SMA connector on the board. Refer to Figure 1 for the connection diagram and follow the procedure below:

1. Connect the power supply as shown. The power labels of V^{+}and GND directly correspond to the power supply. Typical current consumption of LTC6419 is about 104mA for both amplifiers. Jumpers JP1 and JP2 enable or shut down the amplifier A and amplifier B, respectively.
2. Apply input signal or network analyzer to $\mathrm{J} 4\left(\mathrm{IN1}^{-}\right)$ or J6 (IN2-). DC2473A's input is impedance matched to 50Ω.
3. Observe the output via J1 (OUT1 $^{-}$) or J7 (OUT2 $^{-}$). The output is impedance matched to 50Ω, suitable for the input of a network or spectrum analyzer.
Table 1 shows the function of each input and output on the board.

Table 1. DC2473A Board I/O Descriptions

CONNECTOR	FUNCTION
$\begin{aligned} & \text { J2 (IN1+)/J4 (IN1) } \\ & \text { J6 (IN2-)/J8 (IN2+ } \end{aligned}$	Can be configured to either single-ended or differential input.
J1 (OUT1-)/J3 (OUT1+) J5 (0UT2+)/J7(0UT2)	Can be configured to either single-ended or differential output. With proper impedance matching, the device can be used to drive a network analyzer, spectrum analyzer or an ADC.
E1 (VCM1), E3 (VCM2)	The input common mode voltage. Leave open if unused.
E2 (VOCM1), E4 (VOCM2)	Output common mode adjust. By default, these pins are self-biasing within U1A and U1B. Leave open if unused.
E5 (V^{+})	Positive Supply voltage source
E8 (GND)	Supply Ground

PUICK START PROCEDURE

Figure 1. Proper Equipment Setup for Frequency Response Measurement

DEMO MANUAL DC2473A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
1	4	C1, C8, C12, C19	CAP., COG, 1.3pF, 25V, $\pm 0.1 \mathrm{pF}, 0201$	MURATA, GJM0335C1E1R3BB01
2	19	C2, C3, C4, C5, C6, C7, C9, C10, C11, C13, C14, C15, C16, C17, C18, C20, C21, C22, C26	CAP., X7R, 0.1 ${ }^{\text {F }}$, 16V, 10\%, 0402	AVX, 0402YC104KA
3	1	C23	CAP., COG, 100pF, 25V, 5\%, 0402	MURATA, GRM1555C1E101JA01
4	1	C24	CAP., X7R, 1000pF, 50V, 10\%, 0402	MURATA,GRM15AR71H102KA86
5	1	C25	CAP., X7R, 0.01 FF, 25V, 10\%, 0402	MURATA, GRM155R71E103KA01
6	1	C27	CAP., X5R, 0.47 $\mathrm{F}, 25 \mathrm{~V}, 10 \%, 0402$	MURATA, GRM155R61E474KE01
7	1	C29	CAP., X5R, 10ヶF, 25V, 10\%, 0805	MURATA, KRM21ER61E106KFA1
8	6	E1, E2, E3, E4, E5, E8	TESTPOINT, TURRET, 0.063	MILL-MAX, 2308-2-00-80-00-00-07-0
9	2	JP1, JP2	CONN., HEADER, $1 \times 3,2 \mathrm{~mm}$	SULLINS, NRPN031PAEN-RC
10	2	XJP1, XJP2	SHUNT, 2mm	SAMTEC, 2SN-BK-G
11	8	J1-J8	CONN., SMA, 50Ω, EDGE-LANCH	E. F. JOHNSON, 142-0701-851
12	8	R1, R6, R8, R14, R20, R25, R27, R33	RES., CHIP, $150 \Omega 1 / 16 \mathrm{~W}, 0.1 \%, 0402$	YAGEO, RT0402BRE07150RL
13	0	$\begin{aligned} & \text { R3, R4, R5, R10, R13, R15, R21, R22, } \\ & \text { R23, R32, R34, R35 } \end{aligned}$	RES., 0603, OPT	
14	4	R2, R16, R24, R29	RES., $0 \Omega, 0603$	VISHAY, CRCW06030000Z0ED
15	4	R7, R9, R26, R28	RES., 100 ${ }^{\text {, }} 1 / 16 \mathrm{~W}, 1 \%, 0402$	VISHAY, CRCW0402100RFKEA
16	4	R11, R12, R30, R31	RES., 300 ${ }^{\text {, } 1 / 16 \mathrm{~W}, 1 \%, 0402 ~}$	VISHAY, CRCW0402300RFKEA
17	2	R17, R36	RES., 10ת, 1/16W, 1\%, 0402	VISHAY, CRCW040210ROFKEA
18	0	R18, R19, R37, R38	RES., 0402, OPT	
19	4	T1, T2, T3, T4	RF TRANS., $50 \Omega, 10 \mathrm{MHz}-1900 \mathrm{MHz}$, TCM4-19	MINI CIRCUITS, TCM4-19+
20	1	U1	IC., DUAL ADC DRIVER, 20-PIN LGA, 4×3	LINEAR TECH., LTC6419IV\#PDF

SCHEMATIC DIAGRAM

DEMO MANUAL DC2473A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT'TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

> Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Amplifier IC Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
EVAL-ADCMP566BCPZ EVAL-ADCMP606BKSZ AD8013AR-14-EBZ AD8033AKS-EBZ AD8044AR-EBZ AD8225-EVALZ ADA4859-3ACP-EBZ ADA4862-3YR-EBZ DEM-OPA-SO-2B AD744JR-EBZ AD8023AR-EBZ AD8030ARJ-EBZ AD8040ARU-EBZ AD8073JR-EBZ AD813AR-14-EBZ AD848JR-EBZ ADA4858-3ACP-EBZ ADA4922-1ACP-EBZ 551600075-001/NOPB DEM-OPA-SO2E THS7374EVM EVAL-ADCMP553BRMZ EVAL-ADCMP608BKSZ MIOP 42109 EVAL-ADCMP609BRMZ MAX9928EVKIT+ MAX9636EVKIT+ MAX9611EVKIT MAX9937EVKIT+ MAX9934TEVKIT+ MAX44290EVKIT\# MAX2644EVKIT MAX4073EVKIT+ DEM-OPA-SO-2C MAX2643EVKIT ISL28158EVAL1Z MAX40003EVKIT\# MAX2473EVKIT MAX2472EVKIT MAX4223EVKIT MAX9700BEVKIT MADL-011014-001SMB DC1685A DEM-OPA-SO-2D MAX2670EVKIT\# DEM-OPA-SO-1E AD8137YCP-EBZ EVAL-ADA4523-1ARMZ MAX44242EVKIT\# EVAL-LT5401_32FDAZ

[^0]: $\boldsymbol{\mathcal { C }}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks of Linear Technology Corporation. All other trademarks are the property of their respective owners.

