1.5 GHz to 7 GHz Dual Programmable Gain Downconverting Mixer DESCRIPTION

The LTC®5556 dual programmable gain downconverting mixer is ideal for diversity and MIMO receivers that require precise gain setting. Each channel incorporates an active mixer and a digital IF VGA with 15.5 dB gain control range. The IF gain of each channel is programmed in 0.5 dB steps through the SPI.

Enable pins for each channel allow fast turn-on and shutdown. A reduced power mode is also available.
The device has the same functionality as the LTC5566, but the mixers are optimized for a higher 3 GHz to 7 GHz RF frequency range and the IF is optimized for use up to 900 MHz . The mixers may be used down to 1.5 GHz , or up to 8 GHz with degraded performance.

- 5.1GHz to 5.9GHz LTE-U
- Distributed Antenna Systems (DAS)
- Network Test/Monitoring Equipment
- Fixed Satellite Services

All registered trademarks and trademarks are the property of their respective owners.

Dual Programmable Gain Downconverting Mixers

PART NUMBER	OPTIMUM RF RANGE	IF RANGE
LTC5556	3 GHz to 7 GHz	1 MHz to 900 MHz
LTC5566	300 MHz to 4.5 GHz	1 MHz to 500 MHz

TYPICAL APPLICATION

Dual Channel MIMO Receiver with Programmable 0.5dB Gain Steps

LTC5556 Conversion Gain vs RF Frequency and IF Attenuation (0.5dB Gain Steps)

ABSOLUTE MAXIMUM RATINGS

(Notes 1, 2)
Supply Voltage ($\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}, \mathrm{IF1}^{+}, \mathrm{IF1}^{-}$, IF2 ${ }^{+}$, FF2 $^{-}$) $.4 V$
EN1, EN2 Input Voltages -0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
$\mathrm{LO}^{+}, \mathrm{LO}^{-}$Input Power (500 MHz to 8 GHz) +10 dBm
RF1, RF2 Input Power (1.5 GHz to 7 GHz) +20 dBm
LO ${ }^{+}$, LO- DC Voltage ... $\pm 0.5 \mathrm{~V}$
IF DVGA Peak Differential Input Voltage.................... 4 V
SDI, CLK, CSB, RP Input Voltages .. -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Operating Temperature Range (T_{C})........ $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ Junction Temperature (T_{J}) $150^{\circ} \mathrm{C}$ Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$

pIn COnfiGURATIOn

ORDER INFORMATION

LEAD FREE FINISH	TAPE AND REEL	PART MARKING	PACKAGE DESCRIPTION	CASE TEMPERATURE RANGE
LTC5556IUH\#PBF	LTC5556IUH\#TRPBF	5556	$32-$ Lead $(5 \mathrm{~mm} \times 5 \mathrm{~mm})$ Plastic QFN	$-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$

Consult ADI Marketing for parts specified with wider operating temperature ranges.
Tape and reel specifications. Some packages are available in 500 unit reels through designated sales channels with \#TRMPBF suffix.

ELECTRICAL CHARACTERISTICS The o denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$. Test circuit shown in Figure 1. (Note 2)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
Supply Voltage (VCC)		\bullet	3.0	3.3	3.6	V
SPI Supply Voltage (VDD)		\bullet	1.6		3.6	V
Supply Current ($\mathrm{l}_{\text {CC }}$)	One Channel, Full Power Mode Both Channels, Full Power Mode One Channel, Reduced Power Mode Both Channels, Reduced Power Mode Shutdown			$\begin{aligned} & \hline 190 \\ & 380 \\ & 145 \\ & 290 \\ & 1.2 \end{aligned}$	$\begin{aligned} & \hline 225 \\ & 450 \\ & \\ & 1.9 \end{aligned}$	$m A$ $m A$ $m A$ $m A$ $m A$
SPI Supply Current (IDD)	Operating: CSB = Low, f fLK $=20 \mathrm{MHz}$ Idle: CSB = High			$\begin{aligned} & 0.3 \\ & 50 \end{aligned}$	1	mA $\mu \mathrm{A}$

Enable Logic Inputs (EN1, EN2) Internal Pull-Down Resistors on Each Pin

Input High Voltage (On)		\bullet	1.4	V
Input Low Voltage (Off)		\bullet	0.5	V
Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}=3.6 \mathrm{~V}$		100	$\mu \mathrm{~A}$
Enable Turn-On Time			$\mu \mathrm{s}$	
Enable Turn-Off Time			0.3	$\mu \mathrm{~s}$

Reduced Power Logic Input (RP) Internal Pull-Down Resistor

Input High Voltage (Reduced Power, Both Channels)		\bullet	$0.7 \bullet \mathrm{~V}_{\mathrm{DD}}$	V
Input Low Voltage		\bullet	$0.3 \cdot \mathrm{~V}_{\mathrm{DD}}$	V
Input Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$		50	$\mu \mathrm{~A}$

ELECTRICAL CHARACTERISTICS The odenotes the specifications which apply voer the tull operating temperature range, otherwise specifications are at $T_{C}=25^{\circ} \mathrm{C} . \mathrm{V}_{C C}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}$. Test circuit shown in Figure 1. (Notes 3, 6)

| PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
| SPI Port Logic Inputs (CSB, CLK, SDI) | | \bullet | | | |
| Input High Voltage | | \bullet | | | |
| Input Low Voltage | | | | | |
| Input Current | $V_{I N}=V_{D D}=3.6 \mathrm{~V}$ | $0.3 \bullet V_{D D}$ | V | | |
| Input Hysteresis | | | 25 | $\mu \mathrm{~A}$ | |

SPI Port Logic Output (SDO)

Output High Voltage	$I_{\text {SOURCE }}=3 \mathrm{~mA}$	\bullet	$V_{D D}-0.4 \mathrm{~V}$	V
Output Low Voltage	$\mathrm{I}_{\text {SINK }}=3 \mathrm{~mA}$	\bullet		0.4
Output Leakage Current	$\mathrm{V}_{\text {CSB }}=\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}$		V	

SPI Port Timing

SDI Setup Time		5	ns	
SDI Hold Time		10	ns	
CLK Falling to SDO Valid Time	$C_{\text {SDO }}=20 \mathrm{pF}$		15	ns
SDO Rise/Fall Time	$C_{\text {SDO }}=20 \mathrm{pF}$		ns	
SDO Enable Time			10	ns
SDO Disable Time			10	ns
CSB Setup Time		15	ns	
CSB Hold Time		5	ns	
CLK Frequency	$C_{\text {SDO }}=20 \mathrm{pF}$		MHz	

AC ELECTRICAL CHARACTERISTICS The e denotes the speciifications which apply ver the full operating
temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN1}, \mathrm{EN} 2=\mathrm{High}, \mathrm{P}_{\mathrm{LO}}=\mathrm{OdBm}$. Test circuit shown in Figure 1. (Notes 3, 4, 5)

PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS		
RF Input Frequency Range	External Matching Required	\bullet		1.5 to 7		GHz		
LO Input Frequency Range		\bullet		0.5 to 8		GHz		
IF Output Frequency Range	External Matching Required	\bullet		1 to 900		MHz		
1dB IF Gain Rolloff	Wideband IF Match			700		MHz		
IF Gain Error at 270MHz	Differential; Between Any Two 0.5dB Atten Steps Integral; Over Entire 15.5dB IF Atten Range			$\begin{gathered} \pm 0.04 \\ 0.3 \end{gathered}$		dB dB		
IF Phase Error	IF $=250 \mathrm{MHz}$, Full 15.5 dB Atten Range IF $=500 \mathrm{MHz}$, Full 15.5 dB Atten Range			$\begin{aligned} & 3.6 \\ & 5.1 \end{aligned}$		Deg Deg		
LO Input Return Loss	Single-Ended, $\mathrm{Z}_{0}=50 \Omega$, 500 MHz to 8 GHz			>9		dB		
LO Input Power	Single-Ended or Differential	\bullet	-6	0	6	dBm		
Mixer IF Output Impedance	Differential, 10MHz to 1 GHz			200Ω \|	1pF		$\mathrm{R} \\| \mathrm{C}$	
IF DVGA Input Impedance	Differential, 10MHz to 1 GHz			200 ${ }^{\text {\|\| } 1 \mathrm{pF}}$		$\mathrm{R} \\| \mathrm{C}$		
IF DVGA Output Impedance	Differential, 10MHz to 1 GHz			206Ω \|	1pF		$\mathrm{R} \\| \mathrm{C}$	
RF to LO Isolation	$\begin{aligned} & \mathrm{RF}=1.5 \mathrm{GHz} \text { to } 1.7 \mathrm{GHz} \\ & \mathrm{RF}=1.7 \mathrm{GHz} \text { to } 7 \mathrm{GHz} \end{aligned}$			$\begin{aligned} & >38 \\ & >43 \end{aligned}$		dB dB		
RF to Unbalanced IF Port Isolation	$\begin{aligned} & \mathrm{RF}=1.5 \mathrm{GHz} \text { to } 1.8 \mathrm{GHz} \\ & \mathrm{RF}=1.8 \mathrm{GHz} \text { to } 7 \mathrm{GHz} \end{aligned}$			$\begin{aligned} & >39 \\ & >46 \end{aligned}$		dB dB		
LO to Unbalanced IF Port Leakage	$\begin{aligned} & \mathrm{LO}=500 \mathrm{MHz} \text { to } 3 \mathrm{GHz} \\ & \mathrm{LO}=3 \mathrm{GHz} \text { to } 8 \mathrm{GHz} \end{aligned}$			$\begin{aligned} & <-30 \\ & <-40 \end{aligned}$		$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$		

LTC5556

AC ELECTRICAL CHARACTERISTICS The • denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{EN} 1, \mathrm{EN} 2=\mathrm{High}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm} /$ Tone, $\mathrm{P}_{\mathrm{LO}}=0 \mathrm{DBm}$, unless otherwise noted. Test circuit shown in Figure 1. (Notes 3, 4, 5)
2.6 GHz to 6.4 GHz RF Input Matching (See Figure 1): RF = 3.6GHz, IF = 270MHz, Low Side LO

PARAMETER	CONDITIONS		FULL PWR			REDUCED PWRTYP	UNITS
			MIN	TYP	MAX		
RF Input Return Loss	$\mathrm{Z}_{0}=50 \Omega$, 2.6GHz to 6.4 GHz			>10		>10	dB
Power Conversion Gain	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN		4.4	$\begin{array}{r} \hline 9.1 \\ 6.0 \\ 3.0 \\ 0.0 \\ -3.0 \\ -6.1 \end{array}$		$\begin{gathered} \hline 8.8 \\ 5.7 \\ 2.7 \\ -0.3 \\ -3.4 \\ -6.4 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Conversion Gain Flatness	$\mathrm{RF}=3.6 \mathrm{GHz} \pm 100 \mathrm{MHz}, \mathrm{LO}=3.33 \mathrm{GHz}$			± 0.25		± 0.25	dB
Conversion Gain vs Temperature	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	\bullet		-0.013		-0.013	dB/ ${ }^{\circ} \mathrm{C}$
Two-Tone Input 3rd Order Intercept $\left(\Delta f_{\mathrm{RF}}=2 \mathrm{MHz}\right)$	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN			$\begin{aligned} & 22.2 \\ & 23.0 \\ & 23.6 \\ & 23.9 \\ & 24.1 \\ & 24.2 \end{aligned}$		$\begin{aligned} & \hline 17.8 \\ & 18.2 \\ & 18.5 \\ & 18.7 \\ & 18.8 \\ & 18.8 \end{aligned}$	dBm dBm dBm dBm dBm dBm
Two-Tone Output 3rd Order Intercept $\left(\Delta f_{\mathrm{RF}}=2 \mathrm{MHz}\right)$	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN			31.3 29.0 26.6 23.9 21.1 18.1		$\begin{aligned} & 26.6 \\ & 23.9 \\ & 21.2 \\ & 18.4 \\ & 15.4 \\ & 12.4 \end{aligned}$	dBm dBm dBm dBm dBm dBm
Two-Tone Input 2nd Order Intercept $\left(\Delta f_{\mathrm{RF}}=271 \mathrm{MHz}=\mathrm{f}_{\mathrm{I} M 2}\right)$	OdB to 15.5dB IF ATTEN			52		50	dBm
SSB Noise Figure	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN 12dB IF ATTEN 15dB IF ATTEN			$\begin{aligned} & \hline 14.1 \\ & 15.2 \\ & 16.6 \\ & 18.6 \\ & 21.0 \\ & 23.5 \end{aligned}$		$\begin{aligned} & \hline 13.3 \\ & 14.7 \\ & 16.4 \\ & 18.6 \\ & 21.2 \\ & 24.1 \end{aligned}$	dB dB $d B$ $d B$ $d B$ $d B$
SSB Noise Figure Under Blocking (3.7GHz Blocker)	$\begin{aligned} & \text { +2dBm BLOCKER, 3dB IF ATTEN } \\ & \text { +5dBm BLOCKER, 3dB IF ATTEN } \end{aligned}$			$\begin{aligned} & \hline 19.3 \\ & 21.7 \end{aligned}$		$\begin{aligned} & 19.0 \\ & 21.5 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
L0 to RF Leakage	$\mathrm{LO}=1.5 \mathrm{GHz}$ to 7 GHz			<-46		<-46	dBm
1/2 IF Output Spurious Product ($f_{\text {RF }}$ Offset to Produce Spur at $f_{I F}=270 \mathrm{MHz}$)	$\mathrm{f}_{\mathrm{RF}}=3465 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm}$ OdB to 15.5dB IF ATTEN			-59		-58	dBc
1/3 IF Output Spurious Product ($\mathrm{f}_{\text {RF }}$ Offset to Produce Spur at $\mathrm{f}_{\mathrm{IF}}=270 \mathrm{MHz}$)	$\begin{aligned} & \mathrm{f}_{\mathrm{RF}}=3420 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm} \\ & 0 \mathrm{~dB} \text { to } 15.5 \mathrm{~dB} \text { IF ATTEN } \end{aligned}$			-64		-60	dBc
Input 1dB Compression	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher			$\begin{gathered} \hline 8.7 \\ 10.9 \\ 11.5 \\ 11.6 \\ \hline \end{gathered}$		$\begin{gathered} \hline 7.7 \\ 9.5 \\ 10.0 \\ 10.0 \\ \hline \end{gathered}$	dBm dBm dBm dBm
Output 1dB Compression	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN			$\begin{aligned} & \hline 16.8 \\ & 15.9 \\ & 13.5 \\ & 10.6 \end{aligned}$		$\begin{gathered} 15.5 \\ 14.2 \\ 11.7 \\ 8.7 \end{gathered}$	dBm dBm dBm dBm
Channel-to-Channel Isolation	$\mathrm{RF}=3.6 \mathrm{GHz}$			44		44	dB

AC ELECTRICAL CHARACTERISTICS The \bullet denotes the specifications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{EN} 1, \mathrm{EN} 2=\mathrm{High}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm} / \mathrm{Tone}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$, unless otherwise noted. Test circuit shown in Figure 1. (Notes 3, 4, 5)
2.6GHz to 6.4GHz RF Input Matching (See Figure 1): RF = 5.5GHz, IF = 270MHz, Low Side LO

PARAMETER	CONDITIONS		FULL PWR			REDUCED PWR	UNITS
			MIN	TYP	MAX	TYP	
Power Conversion Gain	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN			$\begin{gathered} \hline 9.7 \\ 3.6 \\ -2.5 \end{gathered}$		$\begin{gathered} \hline 9.1 \\ 3.0 \\ -3.0 \end{gathered}$	dB dB dB
Conversion Gain Flatness	$\mathrm{RF}=5.5 \mathrm{GHz} \pm 200 \mathrm{MHz}, \mathrm{LO}=5.23 \mathrm{GHz}$			± 0.7		± 0.7	dB
Conversion Gain vs Temperature	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	\bullet		-0.014		-0.014	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Two-Tone Input 3rd Order Intercept $\left(\Delta f_{\mathrm{RF}}=2 \mathrm{MHz}\right)$	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN			$\begin{aligned} & 19.7 \\ & 19.8 \\ & 19.9 \end{aligned}$		$\begin{aligned} & 14.8 \\ & 15.1 \\ & 15.1 \end{aligned}$	
Two-Tone Input 2nd Order Intercept $\left(\Delta f_{\mathrm{RF}}=271 \mathrm{MHz}=\mathrm{f}_{\mathrm{I} M 2}\right)$	OdB to 15.5dB IF ATTEN			47		48	dBm
SSB Noise Figure	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN			$\begin{aligned} & 13.9 \\ & 16.4 \\ & 20.8 \end{aligned}$		$\begin{aligned} & 12.6 \\ & 15.8 \\ & 20.6 \end{aligned}$	dB dB dB
Input 1dB Compression	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher			$\begin{aligned} & 7.6 \\ & 9.2 \\ & 9.4 \\ & 9.5 \end{aligned}$		$\begin{aligned} & 7.2 \\ & 8.8 \\ & 9.2 \\ & 9.3 \end{aligned}$	dBm dBm dBm dBm
Channel-to-Channel Isolation	$\mathrm{RF}=5.5 \mathrm{GHz}$			38		38	dB

RF $=4.6 \mathrm{GHz}$, $\mathrm{IF}=\mathbf{2 7 0 \mathrm { MHz } \text { , Low Side } \mathrm { LO }}$

PARAMETER	CONDITIONS		FULL PWR		REDUCED PWR	UNITS
			MIN TYP	MAX	TYP	
Power Conversion Gain	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{gathered} 9.2 \\ 3.1 \\ -2.9 \end{gathered}$		$\begin{gathered} \hline 8.7 \\ 2.6 \\ -3.5 \end{gathered}$	$d B$ $d B$ $d B$
Conversion Gain Flatness	$\mathrm{RF}=4.6 \mathrm{GHz} \pm 200 \mathrm{MHz}, \mathrm{LO}=4.33 \mathrm{GHz}$		± 0.7		± 0.7	dB
Conversion Gain vs Temperature	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	\bullet	-0.013		-0.013	dB/ ${ }^{\circ} \mathrm{C}$
Two-Tone Input 3rd Order Intercept $\left(\Delta f_{\mathrm{RF}}=2 \mathrm{MHz}\right)$	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{aligned} & 23.0 \\ & 23.6 \\ & 23.7 \end{aligned}$		$\begin{aligned} & 16.3 \\ & 16.9 \\ & 17.0 \end{aligned}$	dBm dBm dBm
Two-Tone Input 2nd Order Intercept $\left(\Delta f_{\mathrm{RF}}=271 \mathrm{MHz}=\mathrm{f}_{\mathrm{I} \mathrm{M} 2}\right)$	OdB to 15.5dB IF ATTEN		47		46	dBm
SSB Noise Figure	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{aligned} & \hline 14.2 \\ & 16.6 \\ & 21.0 \\ & \hline \end{aligned}$		$\begin{aligned} & 13.1 \\ & 16.1 \\ & 20.9 \\ & \hline \end{aligned}$	dB dB dB
Input 1dB Compression	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher		$\begin{gathered} 8.4 \\ 10.2 \\ 10.7 \\ 10.8 \end{gathered}$		$\begin{gathered} 7.7 \\ 9.6 \\ 10.0 \\ 10.1 \end{gathered}$	dBm dBm dBm dBm
Channel-to-Channel Isolation	$\mathrm{RF}=4.6 \mathrm{GHz}$		40		40	dB

AC ELECTRICAL CHARACTERISTICS The \bullet denotes the speciitications which apply over the full operating temperature range, otherwise specifications are at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} . \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{EN} 1, \mathrm{EN} 2=\mathrm{High}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm} /$ Tone, $\mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$, unless otherwise noted. Test circuit shown in Figure 1. (Notes 3, 4, 5)
2.2GHz to 3.2GHz RF Input Matching (See Figure 1): RF = 2.6GHz, IF = 270MHz, Low Side LO

PARAMETER	CONDITIONS		FULL PWR		REDUCED PWR	UNITS
			MIN TYP	MAX	TYP	
RF Input Return Loss	$\mathrm{Z}_{0}=50 \Omega, 2.2 \mathrm{GHz}$ to 3.2 GHz		>10		>10	
L0 to RF Leakage	$\mathrm{LO}=1.4 \mathrm{GHz}$ to 3.8 GHz		<-50		<-50	
Power Conversion Gain	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{gathered} \hline 9.2 \\ 3.1 \\ -2.9 \end{gathered}$		$\begin{gathered} \hline 8.7 \\ 2.6 \\ -3.4 \end{gathered}$	dB dB dB
Conversion Gain Flatness	$\mathrm{RF}=2.6 \mathrm{GHz} \pm 100 \mathrm{MHz}, \mathrm{LO}=2.33 \mathrm{GHz}$		± 0.14		± 0.14	dB
Conversion Gain vs Temperature	$\mathrm{T}_{\mathrm{C}}=-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$	\bullet	-0.012		-0.012	$\mathrm{dB} /{ }^{\circ} \mathrm{C}$
Two-Tone Input 3rd Order Intercept $\left(\Delta f_{\mathrm{RF}}=2 \mathrm{MHz}\right)$	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{aligned} & 26.6 \\ & 24.5 \\ & 24.0 \end{aligned}$		$\begin{aligned} & 19.2 \\ & 20.4 \\ & 20.7 \end{aligned}$	$\begin{aligned} & \mathrm{dBm} \\ & \mathrm{dBm} \\ & \mathrm{dBm} \end{aligned}$
Two-Tone Input 2nd Order Intercept $\left(\Delta f_{\mathrm{RF}}=271 \mathrm{MHz}=\mathrm{f}_{\mathrm{I} \mathrm{M} 2}\right)$	OdB to 15.5dB IF ATTEN		59		51	dBm
SSB Noise Figure	$\begin{aligned} & \text { OdB IF ATTEN } \\ & \text { 6dB IF ATTEN } \\ & \text { 12dB IF ATTEN } \end{aligned}$		$\begin{aligned} & 13.4 \\ & 16.5 \\ & 20.9 \end{aligned}$		$\begin{aligned} & 12.7 \\ & 16.2 \\ & 21.2 \end{aligned}$	dB dB dB
Input 1dB Compression	OdB IF ATTEN 3dB IF ATTEN 6dB IF ATTEN 9dB IF ATTEN and Higher		$\begin{gathered} \hline 9.3 \\ 11.4 \\ 12.3 \\ 12.5 \\ \hline \end{gathered}$		$\begin{gathered} \hline 8.2 \\ 10.3 \\ 10.9 \\ 11.0 \\ \hline \end{gathered}$	dBm dBm dBm dBm
Channel-to-Channel Isolation	$\mathrm{RF}=2.6 \mathrm{GHz}$		43		43	dB

1.5 GHz to 2.1 GHz RF Input Matching (See Figure 1): RF = 1.8GHz, IF = 270MHz, Low Side LO

PARAMETER	CONDITIONS	FULL PWR			REDUCED PWR TYP	UNITS
		MIN	TYP	MAX		
RF Input Return Loss	$\mathrm{Z}_{0}=50 \Omega$, 1.5GHz to 2.1GHz		>10		>10	dB
LO to RF Leakage	LO $=500 \mathrm{MHz}$ to 3 GHz		<-55		≤-55	dBm
Power Conversion Gain	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{gathered} \hline 8.7 \\ 2.6 \\ -3.4 \end{gathered}$		$\begin{gathered} \hline 8.3 \\ 2.2 \\ -3.8 \end{gathered}$	dB dB dB
SSB Noise Figure	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{aligned} & \hline 12.6 \\ & 16.1 \\ & 21.0 \end{aligned}$		$\begin{aligned} & 12.1 \\ & 16.0 \\ & 21.2 \end{aligned}$	dB $d B$ $d B$
Two-Tone Input 3rd Order Intercept $\left(\Delta f_{\mathrm{RF}}=2 \mathrm{MHz}\right)$	OdB IF ATTEN 6dB IF ATTEN 12dB IF ATTEN		$\begin{aligned} & 22.6 \\ & 24.0 \\ & 24.4 \end{aligned}$		$\begin{aligned} & \hline 19.8 \\ & 20.9 \\ & 21.3 \end{aligned}$	dBm dBm dBm
Channel-to-Channel Isolation	$\mathrm{RF}=1.8 \mathrm{GHz}$		46		46	dB

Note 1: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. Exposure to any Absolute Maximum Rating condition for extended periods may affect device reliability and lifetime.
Note 2: The mixer output pins on this device are sensitive to ESD greater than 1kV (HBM). Proper ESD handling precautions must be observed. All other pins withstand 2 kV .
Note 3: The LTC5556 is guaranteed functional over the $-40^{\circ} \mathrm{C}$ to $105^{\circ} \mathrm{C}$ case temperature range.

Note 4: SSB Noise Figure measured with a small-signal noise source, bandpass filter and 2dB matching pad on RF input, and bandpass filter on the LO input.
Note 5: Channel-to-channel isolation is defined as the relative IF output power of channel 2 to channel 1, with the RF input signal applied to RF1 while the RF2 input is 50Ω terminated. Both channels are enabled and programmed for 3dB IF attenuation.
Note 6: SPI timing guaranteed by design, not subject to test.

TYPICAL PGRFORMANCE CHARACTERISTICS Test tirucuit shown in Figure 1.

$P_{\mathrm{RF}}=-6 \mathrm{dBm} /$ Tone, $\Delta \mathrm{f}=2 \mathrm{MHz}, \mathrm{P}_{\mathrm{L} 0}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, full power mode, unless otherwise noted.
2.6GHz to 6.4 GHz RF Input Matching: IF = 270MHz, Low Side LO

TYPICAL PERFORMANCE CHARACTERISTICS Test itruits shown in figure 1 .

$P_{\text {RF }}=-6 d B m / T o n e, ~ \Delta f=2 \mathrm{MHz}, P_{L 0}=0 d B m, V_{C C}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, full power mode, unless otherwise noted.
2.6 GHz to 6.4 GHz RF Input Matching: IF $=\mathbf{2 7 0 M H z}$, Low Side LO

3.6GHz RF Input and IF Output P1dB vs IF Attenuation

4.6GHz Conv Gain, IIP3, and SSB NF vs IF Attenuation (0.5 dB Steps)

4.6GHz RF Input and IF Output P1dB vs IF Attenuation
4.6GHz Conv Gain, IIP3 and SSB NF vs LO Power and Case Temperature

5.5GHz Conv Gain, IIP3, and SSB NF vs IF Attenuation (0.5 dB Steps)

5.5GHz RF Input and IF Output P1dB vs IF Attenuation

5.5GHz Conv Gain, IIP3 and SSB NF vs LO Power and Case Temperature

TYPICAL PERFORMARCE CHARACTERISTICS Test tirutus shom in figure 1 .

$P_{\mathrm{RF}}=-6 \mathrm{dBm} /$ Tone, $\Delta \mathrm{f}=2 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, full power mode, unless otherwise noted.

2.6GHz to 6.4 GHz RF Input Matching: IF = 270MHz, Low Side LO

2-Tone IF Output Power, IM3 and IM5 vs RF Input Power

Single-Tone IF Output Power, 2×2 and 3×3 Spurs vs RF Input Power
2×2 and 3×3 Spur Suppression vs LO Power

$V_{\text {cc }}$ Shutdown Current vs Supply
Voltage (Both Channels Disabled)

3.6GHz Conversion Gain

Distribution

3.6GHz IIP3 Distribution

3.6GHz SSB NF Distribution

LTC5556

TYPICAL PGRFORMARCE CHARACTERISTICS Test tiruxis shown in figure 1 .

$P_{\mathrm{RF}}=-6 \mathrm{dBm} /$ Tone, $\Delta \mathrm{f}=2 \mathrm{MHz}, \mathrm{P}_{\mathrm{L} 0}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, full power mode, unless otherwise noted.

2.2GHz to 3.2 GHz RF Input Matching: RF $=\mathbf{2 . 6 G H z}, \mathrm{IF}=270 \mathrm{MHz}$, Low Side LO

Conv Gain and IIP3 vs RF Frequency and IF Attenuation (3dB Steps)

5556 G30

SSB NF vs RF Frequency and IF Attenuation (3dB Steps)

2.6GHz Conv Gain, IIP3 and SSB

 NF vs IF Attenuation (0.5dB Steps)

Isolation vs RF Frequency

LO Leakage vs LO Frequency

Conv Gain vs IF Frequency and Attenuation, Swept RF/Fixed LO

2.6GHz RF Input and IF Output P1dB vs IF Attenuation

2.6GHz Conv Gain, IIP3, NF and RF Input P1dB vs Temperature

556 G32

TYPICAL PGRFORMANCE CHARACTERISTICS Test tiruuit shown in Figure 1.

$P_{\mathrm{RF}}=-6 \mathrm{dBm} /$ Tone, $\Delta \mathrm{f}=2 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$, full power mode, unless otherwise noted.
1.5 GHz to 2.1 GHz RF Input Matching: RF $=1.8 \mathrm{GHz}, \mathrm{IF}=270 \mathrm{MHz}$, Low Side LO

5556 G39

SSB NF vs RF Frequency and IF Attenuation (3dB Steps)

5556637
1.8GHz Conv Gain, IIP3 and SSB NF vs IF Attenuation

5556 G40

LO Leakage vs LO Frequency

Conv Gain vs IF Frequency and Attenuation, Swept RF/Fixed LO

1.8GHz RF Input and IF Output P1dB vs IF Attenuation

5556 G41

5556 G42
1.8GHz Conv Gain, IIP3, NF and RF Input P1dB vs Temperature

PIn fUnCTIOnS

GND (Pins 1, 8, 9, 16, 25, 32, Exposed Pad Pin 33): Ground. These pins must be soldered to the RF ground plane on the circuit board. The exposed pad provides both electrical ground contact and thermal contact to the printed circuit board.
RF1, RF2 (Pins 2, 7): Single-Ended RF Inputs for Channels 1 and 2, Respectively. These pins are internally biased to $\mathrm{V}_{\mathrm{CC}} / 2$ when V_{CC} is applied. Therefore, a series DC-blocking capacitor must be used.

CSB (Pin 3): Serial Port Chip Select. This CMOS input activates the SPI inputs when driven low. When driven high, the inputs are deactivated. See the Applications section for more details.

CLK (Pin 4): Serial Port Clock. This CMOS input clocks serial port input data on its rising edge. See the Applications section for more details.

SDI (Pin 5): Serial Port Data Input. This CMOS input is used to load serial data into the 16-bit register. See the Applications section for more details.
SDO (Pin 6): Serial Port Data Output. This CMOS threestate output presents data from the serial port during a communication burst. Optionally, attach a resistor of $>200 \mathrm{k}$ to GND to prevent a floating output. See the Applications section for more details.
$\mathrm{MO2}^{-}, \mathrm{MO2}^{+}, \mathrm{MO1}^{+}, \mathrm{MO1}^{-}$(Pins 10, 11, 30, 31): OpenCollector Differential IF Outputs for Mixer 2 and Mixer 1, Respectively. These pins must be connected to $V_{C C}$ through pull-up inductors. Typical DC current is 28 mA into each pin.
$\mathbf{V}_{\text {cc2 }}, \mathbf{V}_{\text {CC1 }}$ (Pins 12, 29): Power Supply Pins for Channels 2 and 1, Respectively. These pins must be connected to a regulated 3.3 V supply, with a bypass capacitor located close to the pins. Typical DC current consumption is 40 mA into each pin.

EN2, EN1 (Pins 13, 28): Enable Control Pins for Channels 2 and 1, Respectively. A CMOS logic high will enable each channel. These pins have internal 330k pull-down resistors, so if unconnected, both channels are shutdown.

Al2+, $\mathrm{Al2}^{-}, \mathrm{Al1}^{-}, \mathrm{Al1}^{+}$(Pins 14, 15, 26, 27): Differential IF Attenuator Inputs for Channel 2 and Channel 1, Respectively. These pins are internally biased to $\mathrm{V}_{\mathrm{CC}} / 2$ when V_{CC} is applied. Therefore, a series DC-blocking capacitor must be used.
IF2 ${ }^{+}$, IF2 ${ }^{-}$, IF1 $^{-}$, IF1+ (Pins 17, 18, 23, 24): OpenCollector Differential IF Buffer Outputs for Channel 2 and Channel 1, Respectively. These pins must be connected to $V_{C C}$ through pull-up inductors. Typical DC current is 47 mA into each pin.
RP (Pin 19): Reduced Power Select Pin. A CMOS logic low on this pin commands both channels to full power mode, unless programmed to reduced power mode by the SPI. A CMOS logic high programs both channels to reduced power mode, independent of the SPI. This pin has an internal 330k pull-down resistor.
LO- LO+ (Pins 20, 21): Differential Local Oscillator Input. These pins are internally connected to ESD diodes to ground. Therefore, series DC-blocking capacitors must be used if the LO source has a DC voltage present. Singleended or differential drive may be used. Each pin is internally matched to 50Ω, even when the mixers are disabled.
$V_{D D}$ (Pin 22): Power Supply Pin for Serial Interface Logic. This pin must be connected to a regulated 1.8 V to 3.3 V supply. Typical DC current consumption is less than 1 mA with CSB low and the clock running at 10 MHz . When idle, typical current consumption is less than $500 \mu \mathrm{~A}$. The supply voltage on this pin defines the logic levels for the SPI inputs (CSB, CLK and SDI), the SDO output, and the RP pin.

BLOCK DIAGRAM

LTC5556

TEST CIRCUIT

Figure 1. Test Circuit Schematic with 100Ω Matched Differential IF Outputs

RF INPUT MATCHING			
BAND	RF RANGE (GHz)	C1, C2	C17, C18
B1	1.5 to 2.1	7 pF	2 pF
B2	2.2 to 3.2	2 pF	0.7 pF
B3	2.6 to 6.4	1 pF	-
B4	5.6 to 7.2	1.1 pF	0.3 pF

REF DES	VALUE	SIZE	VENDOR	REF DES	VALUE	SIZE	VENDOR
C19, C20	$1 \mu \mathrm{~F}$	0603	Murata 50V X5R	C17, C18	see Table	0402	Murata 50V NP0
C1, C2	See Table	0402	Murata 50V NP0	L1 to L4, L11 to L14	680 nH	0603	Coilcraft 0603AF
C3, C4	1.2 pF	0402	Murata 50V NP0	L5 to L8	18 nH	0201	Murata LQP03HQ
C5 to C8	1 nF	0201	Murata 50V NP0				
C9 to C16	10 nF	0402	Murata 50V X7R	L15 to L18	20 nH	0402	Coilcraft 0402HP

APPLLCATIONS InFORMATION

Introduction

The LTC5556 incorporates two identical RF-to-IF downconversion mixers driven by a common LO input. The symmetry of the IC assures that both mixers are driven with an amplitude- and phase-coherent LO. Each channel includes an IF DVGA (digital variable gain amplifier) consisting of a programmable 15.5 dB range digital IF attenuator with 0.5 dB steps, and a fixed-gain IF buffer amplifier. The cascaded RF-to-IF conversion gain ranges from 9.5 dB at maximum IF gain, to -6dB at minimum IF gain. The IF frequency response is flat within 1 dB from 30 MHz to 450 MHz , and may be modified by changing the IF output match.

Each channel can be programmed to a reduced power mode via the SPI or the RP pin, resulting in a 24% power savings, with reduced linearity performance. The test circuit schematic in Figure 1 shows the external components used to characterize the IC. The evaluation board is shown in Figure 2.

Figure 2. Evaluation Board

RF Inputs

A simplified schematic of the channel 1 RF input is shown in Figure 3 (channel 2 is identical and not shown). Each RF input includes an integrated transformer and a differential RF buffer amplifier. The transformer's primary winding is biased at $1.65 \mathrm{~V}_{\mathrm{DC}}$, and therefore requires an external DC-blocking capacitor.

The RF inputs are 50Ω matched from 2.6 GHz to 6.4 GHz , requiring only a 1 pF series capacitor (C1) for DC-blocking. Shunt reactance C 17 is used to tune the inputs down to 1.5 GHz , or up to 7 GHz . Figure 1 summarizes the external matching component values for all bands. Measured RF input return loss for each band is shown in Figure 4.

Figure 3. RF Input Schematic

Figure 4. RF Input Return Loss for Each Band

APPLICATIONS INFORMATION

LO Input

A simplified schematic of the LO input is shown in Figure 5. As shown, each mixer has its own LO amplifier. A differential input is provided although the IC is characterized and production-tested with single-ended drive. Differential LO drive improves performance slightly, and is recommended if available. Each LO input is internally matched to 50Ω from 500MHz to 8GHz, requiring no external components. ESD protection diodes on each input limit the peak voltage swing to approximately $\pm 700 \mathrm{mV}(+7 \mathrm{dBm})$, although higher LO drive, up to 10 dBm will not damage the input. An external DC-blocking capacitor is only needed if the LO source has DC voltage present. The measured LO input return loss is shown in Figure 6.

Figure 5. LO Input Schematic

Figure 6. LO Input Return Loss

IF Outputs

A simplified IF output schematic for channel 1, with external matching components is shown in Figure 7 (channel 2 is identical, and not shown). The final output stage is differential, open-collector with integrated matching resistors, capacitors and ESD protection diodes. Each output pin must be biased at the supply voltage (V_{CC}) using external chokes (L11 and L13). Each pin draws approximately 47 mA of DC supply current (94 mA total). Therefore, inductors with low DC resistance $(<1 \Omega)$, are required for the highest output IP3 and P1dB.
The integrated output resistors set the differential output resistance at 206Ω. C3, L15 and L17 form a 2:1 impedance transformer which transforms the output to 100Ω differential. If a 200Ω output is desired, C3 is not used and the values of L15 and L17 are reduced to the values shown in Table 1. C9 and C11 are DC-blocking capacitors, which may be omitted if the following stage is already DC-blocked.

Figure 7. IF Output Schematic

APPLICATIONS INFORMATION

The standard evaluation board is built with 100Ω differential IF outputs, but also has pads which allow the use of IF transformers to provide 50Ω single-ended outputs. To implement this, it is recommended to use the 200Ω matching shown in Table 1 and 4:1 IF transformers. Figure 16 shows the circuit schematic and measured performance using this approach.

Table 1. IF Output Matching Element Values

DIFFERENTIAL $\mathbf{Z}_{\text {OUT }}$	C3	L15, L17	9dB RETURN LOSS BANDWIDTH
$200 \Omega^{*}$	-	10 nH	23 MHz to 440 MHz
100Ω	3.9 pF	47 nH	70 MHz to 242 MHz
	2.2 pF	33 nH	87 MHz to 352 MHz
	1.2 pF	20 nH	115 MHz to 495 MHz
	0.6 pF	16 nH	155 MHz to 610 MHz
	-	12 nH	190 MHz to 810 MHz

*200 Ω differential output return loss measured with 4:1 transformer.
The differential IF output impedance vs frequency is listed in Table 2. The impedances are at the package pins with no external components. Measured IF output return loss vs frequency is shown in Figure 8.

Figure 8. IF Output Return Loss (100 Ω Differential)

Table 2. Differential IF Output Impedance vs Frequency
$\left.\begin{array}{c|c}\hline \text { IF FREQUENCY (MHz) } & \text { DIFFERENTIAL IMPEDANCE (R }{ }_{\text {IF }} \|_{\text {| }}^{\text {IF }}\end{array}\right)$

Mixer Output to IF DVGA Interface

The mixer's 200Ω differential output impedance matches the IF DVGA's 200Ω differential input impedance, even over normal process variation due to the monolithic implementation. This assures minimal and repeatable DNL and INL over the full IF attenuation range. Furthermore, the mixer output and DVGA input include integrated matched capacitors, which simplify the realization of a lowpass filter between the mixer and DVGA. This filter attenuates undesired high frequency mixing products and LO leakage before entering the DVGA.
A simplified schematic of the interface for channel 1 is shown in Figure 9 (channel 2 is identical and not shown). L5 and L7 connect the mixer output to the DVGA input, while forming a 1 GHz 3rd-order, 0.2 dB ripple Chebyshev lowpass filter. L1 and L3 supply DC current to the mixer and C5 and C7 are DC-blocking capacitors.

APPLICATIONS InFORMATION

Figure 9. Mixer to IF DVGA Interface

Figure 10. Equivalent Lowpass Filter Schematic

An equivalent AC schematic of the lowpass filter is shown in Figure 10, where the mixer output and DVGA input are modeled as 200Ω in parallel with 1 pF . The mixer supply chokes and series DC blocking capacitors are ignored in this schematic.

It's also possible to implement a bandpass filter between the mixer and DVGA. An example is shown in Figure 11, where a 3rd-order bandpass filter is realized by changing the values of the reactive components and adding C 21 , C23 and L19. Figure 19 shows measured conversion gain vs IF output frequency using this bandpass topology.

IF DVGA Phase vs IF Attenuation

Ideally, the phase of the IF output would be constant over the full IF attenuation range. Practically, there is some phase shift due to circuit parasitics in the attenuator. The LTC5556's IF DVGA is optimized for the lowest possible phase variation (or phase error) over the full IF attenuation range. Phase error vs IF attenuation for the complete IF section is listed in Table 3.

Table 3. IF Phase Error vs IF Attenuation

ATT (dB)	$\mathbf{2 5 0 M H z}$	$\mathbf{3 5 0 M H z}$	$\mathbf{5 0 0 M H z}$
0	REF	REF	REF
3	-1.4°	-2.3°	-1.6°
6	-2.5°	-3.5°	-3.3°
9	-3.2°	-4.4°	-4.5°
12	-3.7°	-5.0°	-5.1°
15	-3.6°	-4.7°	-4.5°

Figure 11. 3rd-Order Bandpass Filter Realization

APPLICATIONS INFORMATION

Downconverter Performance vs IF Attenuation

RF-IF conversion gain, IIP3, OIP3 and noise figure over the full 15.5 dB attenuation range is shown in Figure 12. The same data is listed in Table 4 with the INL and DNL at each attenuator setting.

Table 4. Conversion Gain, IIP3, OIP3 and SSB NF vs IF Attenuation ($\mathrm{RF}=3.6 \mathrm{GHz}$, IF = 270MHz, Low Side LO)

$\begin{gathered} \mathrm{A} \\ (\mathrm{~dB}) \end{gathered}$	$\begin{array}{\|l\|} \hline \text { IF1[4:0] } \\ \text { IF2[4:0] } \end{array}$	$\begin{aligned} & \mathrm{G}_{\mathrm{C}} \\ & (\mathrm{~dB}) \end{aligned}$	$\begin{gathered} \text { IIP3 } \\ (\mathrm{dBm}) \end{gathered}$	$\begin{gathered} \hline \text { OIP3 } \\ (\mathrm{dBm}) \end{gathered}$	$\begin{gathered} \hline \mathrm{NF} \\ (\mathrm{~dB}) \end{gathered}$	DNL (dB)	$\begin{aligned} & \text { INL } \\ & \text { (dB) } \end{aligned}$
0	0	9.13	22.2	31.3	14.1	-	-
0.5	1	8.70	22.6	31.3	14.2	-0.07	-0.07
1.0	2	8.11	22.4	30.5	14.5	0.09	0.02
1.5	3	7.66	22.7	30.4	14.7	-0.05	-0.03
2.0	4	7.12	22.8	29.9	14.9	0.04	0.01
2.5	5	6.66	23.2	29.8	15.0	-0.04	-0.03
3.0	6	6.12	23.0	29.1	15.2	0.04	0.01
3.5	7	5.66	23.4	29.1	15.4	-0.04	-0.03
4.0	8	5.12	23.2	28.4	15.6	0.04	0.01
4.5	9	4.65	23.7	28.3	15.9	-0.03	-0.02
5.0	10	4.12	23.4	27.6	16.1	0.03	0.01
5.5	11	3.65	23.9	27.5	16.4	-0.03	-0.02
6.0	12	3.11	23.6	26.7	16.6	0.04	0.02
6.5	13	2.64	24.0	26.6	16.9	-0.03	-0.01
7.0	14	2.10	23.7	25.8	17.2	0.04	0.03
7.5	15	1.62	24.1	25.7	17.6	-0.02	0.01
8.0	16	1.08	23.8	24.9	18.0	0.04	0.05
8.5	17	0.61	24.2	24.8	18.2	-0.03	0.02
9.0	18	0.07	23.9	24.0	18.6	0.04	0.06
9.5	19	-0.41	24.3	23.9	19.0	-0.02	0.04
10.0	20	-0.95	23.9	23.0	19.4	0.04	0.08
10.5	21	-1.43	24.3	22.9	19.7	-0.02	0.06
11.0	22	-1.97	24.0	22.0	20.1	0.04	0.10
11.5	23	-2.46	24.3	21.9	20.5	-0.01	0.09
12.0	24	-2.99	24.1	21.1	21.0	0.03	0.12
12.5	25	-3.48	24.5	21.0	21.5	-0.01	0.11
13.0	26	-4.02	24.1	20.1	22.0	0.04	0.15
13.5	27	-4.50	24.5	20.0	22.4	-0.02	0.13
14.0	28	-5.05	24.2	19.1	22.9	0.05	0.18
14.5	29	-5.53	24.4	18.9	23.2	-0.02	0.16
15.0	30	-6.09	24.2	18.1	23.5	0.06	0.22
15.5	31	-6.57	24.5	17.9	24.0	-0.02	0.20

Figure 12. Downconverter RF-IF Conversion Gain, IIP3, OIP3 and Noise Figure vs IF Attenuation.

Individual Stage Performance

The LTC5556 is characterized, specified and productiontested as a complete downconverter, from the RF inputs to the final IF outputs. For some applications, it may be preferred to insert a higher selectivity IF filter between the mixer and IF DVGA. To help with system performance calculations, the nominal performance of the mixer is shown in Table 5 and the IF DVGA performance is listed in Table 6. This information is provided for reference only as these blocks are not production-tested independently.

Table 5. Mixer Power Conversion Gain, IIP3 and SSB NF ($\mathrm{RF}=3.6 \mathrm{GHz}$, IF = 270MHz, Low Side LO)

FULL PWR MODE			REDUCED PWR MODE		
$\mathrm{G}_{\mathrm{p}}(\mathrm{dB})$	IIP3 (dBm)	NF (dB)	$\mathrm{G}_{\mathrm{P}}(\mathrm{dB})$	IIP3 (dBm)	NF (dB)
-1	26	13	-1.3	21	11

Table 6. IF DVGA Power Gain, OIP3 and SSB NF (270MHz)

$\begin{aligned} & \text { IF } \\ & \text { ATT } \\ & \text { (dB) } \end{aligned}$	FULL PWR MODE			REDUCED PWR MODE		
	GAIN (dB)	$\begin{gathered} \hline \text { OIP3 } \\ (\mathrm{dBm}) \end{gathered}$	$\begin{gathered} \mathrm{NF} \\ (\mathrm{~dB}) \end{gathered}$	GAIN (dB)	$\begin{gathered} \hline \text { OIP3 } \\ (\mathrm{dBm}) \end{gathered}$	$\begin{gathered} \mathrm{NF} \\ \text { (dB) } \end{gathered}$
0	10.2	36.5	6.2	10.0	33.5	6.2
3	7.2	36.5	9.9	7.0	33.2	10.0
6	4.2	36.5	13.0	4.0	33.2	12.9
9	1.2	36.5	15.9	1.0	33.2	15.9
12	-1.8	36.2	18.9	-2.0	33.1	18.9
15	-4.8	36.0	21.9	-5.0	32.7	21.9

APPLICATIONS Information

Enable Inputs

Figure 13 shows a schematic of the Channel 1 enable interface. Channel 2 is identical and not shown. As shown, the positive ESD diodes for EN1 are connected to $\mathrm{V}_{\mathrm{CC1}}$ The positive ESD diodes for channel 2 are connected to $V_{C C 2}$ (not shown). To enable a channel, the applied voltage must be greater than 1.4 V . An applied voltage less than 0.5 V will disable the channel. If the enable function is not needed, the enable pin can be connected directly to the adjacent $\bigvee_{\text {CC }}$ pin. If left floating, the internal $330 \mathrm{k} \Omega$ pull-down resistor will disable the channel.

The voltage on the enable pins should never exceed $V_{\text {CC }}$ by more than 0.3 V , otherwise supply current may be sourced through the upper ESD diodes. Under no circumstances should voltage be applied to the enable pins before supply voltage is applied to the $V_{C C}$ pins. If this occurs, damage to the IC may result.

Figure 13. Channel 1 Enable Pin Interface

Supply Voltage Ramping

Fast ramping of the supply can cause a current glitch in the internal ESD protection circuits. Depending on the supply inductance, this could result in a supply voltage transient that exceeds the maximum rating. A supply voltage ramp time greater than 1 ms is recommended.
Supply voltage for $\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC2}}$ (Pins 29 and 21) and the IF amplifiers (Pins 17, 18, 23 and 24) are connected on the evaluation board, which assures that they all ramp up and down at the same rate. If they are powered independently in the final application circuit, care must be taken to assure that the IF amplifier supply pins go high before the $V_{C C}$ pins, and go low after the $V_{C C}$ pins.

SPI DESCRIPTION

IF DVGA attenuator control and reduced power mode for each downconverter channel is programmed through the 3 -wire SPI consisting of CSB, CLK and SDI. A fourth pin, SDO, is a serial output available to read out the contents of the registers. The SDO pin may also be used to daisychain multiple SPI interfaces on a single bus. For example, in an 8-channel MIMO receiver application, all four LTC5556 dual downconverters can be programmed with a single, 64-bit load, while sharing a common CSB line.

A block diagram of the SPI is shown in Figure 14. As shown, it is a 16-bit double-buffered FIFO slave architecture, with 8-bits for each channel. Logic levels for the digital inputs and SDO output are 1.8 V to 3.3 V CMOS compatible, determined by the supply voltage on the $V_{D D}$ pin. An internal POR (power-on-reset) connected to the $V_{D D}$ pin, resets all 16 bits to logic 0 at power-up, or when $V_{D D}$ drops below 0.5 V and then rises back above 1.2 V . The POR requires approximately 100μ s to reset the registers.

SPI PROGRAMMING

Data transfers to the part are accomplished by first taking CSB low to enable the port. Then, serial input data on SDI is captured on the rising edge of CLK and shifted into a 16-bit shift register, MSB first. Serial data from the registers is driven out to SDO on the clock's falling edge. The communication burst is terminated by taking CSB high. The rising edge on CSB will then latch the shiftregister's contents into a 16-bit buffer D-latch. The buffer latch prevents the downconverter's gain and power mode from changing while data is loaded. See Figure 15 for timing details.
When CSB is high, the clock and data inputs are internally gated off, minimizing current consumption when not selected, and the SDO output is high impedance. However, it is recommended that the serial interface signals should remain idle between data transfers to avoid digital noise coupling into the RF signal paths.

APPLICATIONS InFORMATION

Figure 14. SPI Block Diagram

Figure 15. SPI Timing Diagram

LTC5556

APPLICATIONS InFORMATION

A memory map of the register contents is shown in Table 7, with detailed bit descriptions in Table 8. Each register's default power-up value is also shown in Table 8, which is:

- OdB IF attenuation (maximum gain)
- Full power mode

When the logic level on RP (Pin 19) is low, each channel may be independently programmed to reduced power mode via the RP1 and RP2 bits in the SPI. When RP pin is driven high, both channels are commanded to reduced power mode and the RP1 and RP2 bits from the SPI are ignored.

Table 7. Serial Port Register Contents

CHANNEL 2 (8 bits)								
MSB D15	D14	D13	D12	D11	D10	D9	D8	
RP2	X	X	IF2[4]	IF2[3]	IF2[2]	IF2[1]	IF2[0]	
CHANNEL 1 (8 bits)								
D7	D6	D5	D4	D3	D2	D1	DSB	
RP1	X	X	IF1[4]	IF1[3]	IF1[2]	IF1[1]	IF1[0]	

Table 8. Serial Port Register Bit Field Summary

BITS	DESCRIPTION	DEFAULT
IF1[4:0]	Ch. 1 IF Attenuator Control	00000 (Max Gain)
RP1	Ch. 1 Reduced Power	0 (Full Power)
IF2[4:0]	Ch. 2 IF Attenuator Control	00000 (Max Gain)
RP2	Ch. 2 Reduced Power	0 (Full Power)
X	Don't Care (Bits Not Used)	0

Spurious Output Levels

Spurious output levels vs harmonics of the RF and LO are tabulated in Table 9. The spur levels were measured using the test circuit shown in Figure 1, with an RF input power of -6 dBm and 3 dB of IF attenuation. Table 9a shows the relative spur levels in full power mode and Table 9b shows the relative spur levels in reduced power mode. The mixer spur levels are insensitive to the IF attenuation setting.

The spur frequencies can be calculated using the following equation:

$$
\mathrm{f}_{\mathrm{SPUR}}=\left(\mathrm{M} \bullet \mathrm{f}_{\mathrm{RF}}\right)-\left(\mathrm{N} \bullet \mathrm{f}_{\mathrm{LO}}\right)
$$

Table 9. IF Output Spur Levels (dBc).
($\mathrm{RF}=3.6 \mathrm{GHz}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm}, \mathrm{IF}=270 \mathrm{MHz}$, Low Side LO, $\mathrm{P}_{\mathrm{L} 0}=0 \mathrm{dBm}, 3 \mathrm{~dB}$ IF Attenuation, $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)
Table 9a. Full Power Mode

		\mathbf{N}						
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	
\mathbf{M}	$\mathbf{0}$		-47	-82	${ }^{*}$	-82	-82	
	$\mathbf{1}$	-79	0	-77	${ }^{*}$	${ }^{*}$	${ }^{*}$	
	$\mathbf{2}$	${ }^{*}$	${ }^{*}$	-64	${ }^{*}$	${ }^{*}$	${ }^{*}$	
	$\mathbf{3}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	-71	${ }^{*}$	${ }^{*}$	
	$\mathbf{4}$	-83	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	
	$\mathbf{5}$	-84	-82	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	

*Less than -85 dBC
Table 9b. Reduced Power Mode

		\mathbf{N}						
		$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	
\mathbf{M}	$\mathbf{0}$		-46	-82	${ }^{*}$	-82	-82	
	$\mathbf{1}$	-78	0	-78	${ }^{*}$	${ }^{*}$	${ }^{*}$	
	$\mathbf{2}$	-84	${ }^{*}$	-64	${ }^{*}$	${ }^{*}$	${ }^{*}$	
	$\mathbf{3}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	-70	${ }^{*}$	${ }^{*}$	
	$\mathbf{4}$	-82	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	${ }^{*}$	
	$\mathbf{5}$	-83	-82	-84	${ }^{*}$	${ }^{*}$	${ }^{*}$	

*Less than -85 dBC

APPLICATIONS INFORMATION

Single-Ended IF Outputs Using a Balun

The LTC5556 evaluation board has differential IF outputs, but can be modified for single-ended operation by inserting a $4: 1$ balun, as shown in Figure 16. The 10 nH series inductors at the differential IF output compensate for the IF amplifier's output capacitance, producing a 200Ω differential output up to approximately 500 MHz . The $4: 1$ balun then converts the 200Ω differential output to 50Ω single-ended. For applications with IF frequency less than 250 MHz , the series 10 nH inductors are not needed.

Figure 16 shows the measured conversion gain vs IF output frequency, using a Mini-Circuits TCM4-19+ balun. The RF input was swept from 3.35 GHz to 3.85 GHz using a fixed 3.33 GHz LO, producing an IF output ranging from 20 MHz to 520 MHz . Measured conversion gain for the standard 100Ω differential output matching is also shown on the same graph for comparison, highlighting the insertion loss of the balun.

RF to IF Conv Gain vs IF Frequency 2002 Output with 4:1 Balun

Figure 16. Test Circuit and Measured Conversion Gain Using 200 2 Output Matching with a 4:1 IF Transformer to Realize a 50Ω Single-Ended IF Output

LTC5556

APPLICATIONS InFORMATION

5.6 GHz to 7.2 GHz RF Application with Wideband IF

The LTC5556's RF inputs are optimized for operation up to 6 GHz , but may be used up to 8 GHz with degraded performance. Figure 17 shows an example where the RF input is matched from 5.6 GHz to 7.2 GHz and the IF output is matched for wideband operation up to 800 MHz .

The measured performance is summarized in Figure 18, where the RF input is swept from 6.1 GHz to 6.9 GHz , with a fixed 6.03 GHz LO , resulting in a wideband 70 MHz to 870 MHz IF output, centered at 470 MHz .

Figure 17. 5.6GHz to 7.2GHz Input Matching with Wideband IF Output Match

Figure 18. Measured Performance for 5.6 GHz to 7.2 GHz Downconverter with Wideband IF Output

PACKAGE DESCRIPTION

UH Package

32-Lead Plastic QFN ($5 \mathrm{~mm} \times 5 \mathrm{~mm}$)
(Reference LTC DWG \# 05-08-1693 Rev D)

RECOMMENDED SOLDER PAD LAYOUT
APPLY SOLDER MASK TO AREAS THAT ARE NOT SOLDERED

NOTE

1. DRAWING PROPOSED TO BE A JEDEC PACKAGE OUTLINE

MO-220 VARIATION WHHD-(X) (TO BE APPROVED)
2. DRAWING NOT TO SCALE
3. ALL DIMENSIONS ARE IN MILLIMETERS
4. DIMENSIONS OF EXPOSED PAD ON BOTTOM OF PACKAGE DO NOT INCLUDE MOLD FLASH. MOLD FLASH, IF PRESENT, SHALL NOT EXCEED 0.20 mm ON ANY SIDE
5. EXPOSED PAD SHALL BE SOLDER PLATED
6. SHADED AREA IS ONLY A REFERENCE FOR PIN 1 LOCATION

ON THE TOP AND BOTTOM OF PACKAGE

LTC5556

TYPICAL APPLICATION

Figure 19. Test Circuit and Measured Conversion Gain with 3rd-Order Bandpass Interstage Filter

RELATED PARTS

PART NUMBER	DESCRIPTION	COMMENTS
Infrastructure		
LTC5566	300MHz to 6 GHz Dual Programmable Gain Downconverting Mixer	12dB Gain, 35dBm OIP3 and 13.3dB NF at 2.6GHz
LTC5569	300MHz to 4GHz Dual Active Downconverting Mixer	2dB Gain, 26.7dBm IIP3 and 11.7dB NF at 1950MHz, 3.3V/180mA Supply
LTC6430	High Linearity Differential RF/IF Amplifier	51 dBm OIP3 at $240 \mathrm{MHz}, 100 \Omega$ Differential
LTC5544	4GHz to 6GHz Downconverting Mixer Family	7.4dB Gain, >25dBm IIP3, 11.3dB NF, 3.3V/200mA Supply
LT5554	Ultralow Distortion IF Digital VGA	48 dBm OIP3 at 200MHz, 2dB to 18dB Gain Range, 0.125dB Gain Steps
LTC5576	3GHz to 8GHz Active Upconverting Mixer	25dBm OIP3, -0.6 dB Gain, $-154 \mathrm{dBm} / \mathrm{Hz}$ Output Noise Floor, -36 dBm LO Leakage
LTC5548	2GHz to 14GHz Wideband Microwave Mixer	Up- or Down-Conversion, 21.4dBm IIP3 at 9GHz, OdBm LO Drive, IF Bandwidth DC to 6 GHz
LTC5549	2GHz to 14GHz Wideband Microwave Mixer	Up- or Down-Conversion, 22.8dBm IIP3 at 12GHz, OdBm LO Drive, Integrated Balun with IF BW $=500 \mathrm{MHz}$ to 6 GHz
LTC5593	Dual 2.3GHz to 4.5GHz Downconverting Mixer	8.5dB Gain, 27.7dBm IIP3, 9.5dB Noise Figure
RF PLL/Synthesizer with VCO		
LTC6946	Low Noise, Low Spurious Integer-N PLL with Integrated VCO	373MHz to 5.79 GHz , $-157 \mathrm{dBc} / \mathrm{Hz}$ WB Phase Noise Floor, $-100 \mathrm{dBc} / \mathrm{Hz}$ Closed-Loop Phase Noise
LTC6948	Low Noise, Low Spurious Frac-N PLL with Integrated VCO	373MHz to $6.39 \mathrm{GHz},-157 \mathrm{dBc} / \mathrm{Hz}$ WB Phase Noise Floor, $-274 \mathrm{dBc} / \mathrm{Hz}$ Normalized In-Band 1/f Noise
ADCs		
LTC2145-14	14-Bit, 125Msps 1.8V Dual ADC	73.1dB SNR, 90dB SFDR, 95mW/Ch Power Consumption
LTC2185	16-Bit, 125Msps 1.8V Dual ADC	76.8dB SNR, 90dB SFDR, 185mW/Channel Power Consumption
LTC2158-14	14-Bit, 310Msps 1.8V Dual ADC, 1.25GHz FullPower Bandwidth	68.8dB SNR, 88dB SFDR, 362mW/Ch Power Consumption, 1.32VP-p Input Range

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB

