DC385 Introduction

Description

Demonstration circuit DC385 is a high density synchronous step-down (buck) regulator using the LTC $^{\otimes}$ 1778 No R_{SENSE}TM switching regulator controller. This controller uses a valley current control architecture to deliver very low duty cycles without requiring a sense resistor. It provides high efficiency operation at light loads by means of discontinuous mode operation. Noise and RF interference are reduced by means of a forced continuous control pin. The circuit uses a dual SyncFETTM and has a very small footprint. With a wide operating range of V_{IN} from 5V to 28V and a duty cycle of 2% to 90% at 200kHz, the circuit demonstrates that the LTC1778 is ideal for applications such as notebook and palmtop computers, PDAs, battery chargers and distributed power systems.

Quick Start Guide

This demonstration board is easily set up to evaluate the performance of the LTC1778. Please follow the procedure outlined below for proper operation.

- 1. Connect input power to the V_{IN} and GND terminals. Input voltage is limited to between 5V to 28V. Refer to Figure 1 for proper measurement equipment setup.
 - 2. Connect the load between the V_{OUT} and GND terminals.

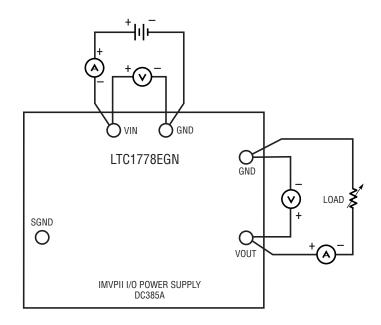


Figure 1. DC385 Test and Measurement Setup

- 3. Connect the FCB signal to the SGND terminal to force continuous synchronous operation at low loads; connect the FCB signal to the INTV_{CC} signal to enable discontinuous mode operation at low loads (see solder pads on bottom side of assembly).
- 4. To shut down the circuit, connect the RUN/SS signal to the SGND terminal. Disconnect the RUN/SS signal from the SGND terminal to enable normal operation.
- 5. When measuring input or output ripple, see Figure 2 for proper scope probe technique.

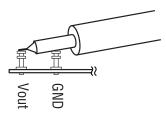


Figure 2. Scope Probe Position for Ripple Measurement

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP1300.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM
BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM

NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ