DC419A – LTC1779 Constant Frequency Step-Down Converter

Description

Demonstration Circuit DC419A is a 550kHz 250mA step-down DC/DC switching converter using the LTC1779. With its internal power switch and ThinSOT package, the LTC1779 makes a very compact and low-parts-count DC/DC converter. The 550kHz switching frequency allows all of the components to be small, surface mount devices. The current-mode control topology creates fast transient response and good loop stability with a minimum number of external compensation components. The 100% duty cycle feature provides very low dropout voltages and high efficiency. The 8uA shutdown current extends battery life. The wide Vin range of the LTC1779 allows step-down configurations from 2.5Vin up to 9.8Vin.

Demonstration Circuit DC419A is a step-down converter using the LTC1779. The circuit is designed for a single or dual Lithium-Ion battery input to 1.8V output at 250mA for portable electronics. This board was designed for low power, hand-held applications where small circuit size and low component count are important. The external sense resistor is set to reduce the short circuit current limit between 260mA and 300mA over the input voltage ranges of 2.7V to 4.2V for single Li-Ion batteries and 5.4V to 8.4V for dual. The components built on the board are optimized for single Li-Ion battery applications, but can be simply adjusted for dual or higher input voltages up to 9.8Vin and down to 2.5Vin.

Typical Performance Summary $(T_A = 25C)$

Step-Down ConverterVin2.7 to 4.2VVout1.8VIout250mA(max)Eff.up to 85% at 250mA and up to 91% at 100mA outputShort Circuitup to 270mA output current

Quick Start Guide

Refer to Figure 1 for proper measurement equipment setup and follow the procedure outlined below:

- 1. Connect the 2.7 to 4.2V input power supply to the Vin and Gnd terminals on the board.
- 2. Connect an ammeter in series with the input supply to measure input current.
- 3. Connect either power resistors or an electronic load to the Vout and Gnd terminals on the board.
- 4. Connect an ammeter in series with output load to measure output current.

- 5. Connect a voltmeter across the Vin and Gnd terminals to measure input voltage.
- 6. Connect a voltmeter across the Vout and Gnd terminal to measure output voltage.
- 7. After all connections are made, turn on input power and verify that the output voltage is 1.8V.

Figure 1... Quick Start connections for DC419A.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFLEV MIC5281YMMEEV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2106-1.8-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ