QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 423

DESCRIPTION

Demonstration circuit 423 is a $60 \mathrm{~V}, 500 \mathrm{kHz}, 1 \mathrm{~A}$ load current, monolithic step-down DC/DC switching converter using the LT1956. With its wide input voltage range, 1.5A internal power switch, and thermally enhanced package, the LT1956 is a very versatile and powerful IC for DC/DC converters that require compact space and a wide variety of input voltage ranges. The constant 500 kHz switching frequency allows all of the components to be small, surface mount devices. The currentmode control topology creates fast transient response and good loop stability with a minimum number of external compensation components and the use of ceramic input and output capacitors. The low resistance internal power switch (0.2Ω) maintains high efficiencies $>75 \%$ and up to 90%. The SHDN pin and $25 \mu \mathrm{~A}$ shutdown current extends battery life. The wide VIN range of the LT1956 allows steady state input voltages from 7.5V input up to 25 V input. The LT1956 is capable of steady state operation of up to 60 V if the output voltage is set higher than 5 V and the duty cycle remains high enough (typically above 25\%). Minimum on-time and maximum output power at high input voltages may have thermal restrictions (please see datasheet for more details). However, with 5 V output, the LT1956 is designed for
transient operation up to 60 V . Synchronization of switching frequencies up to 700 kHz is possible.

Demonstration Circuit 423 is designed for 7.5 V to 25 V input (with up to 60 V transient) to 5.0 V output at 1 A load current for automotive, industrial, portable computers, battery chargers, and distributed power systems. This board was designed for wide input voltage range applications where simplicity, small circuit size, and low component count are important as well as up to 1 A of load current. The extremely low output voltage ripple ceramic capacitor not only demonstrates small size and low cost, but the advantage of current-mode control in step-down applications with a simple compensation network and a feedforward capacitor for more rugged stability and excellent transient response. Demonstration Circuit 423 is best used in 500 kHz applications where the maximum duty cycle does not exceed 75% and the minimum steady state duty cycle remains above 25%. Duty cycles below 25% are capable, with the restriction of minimum on-time, the part may begin to skip pulses to effectively lower the overall minimum on-time.
Design files for this circuit board are available. Call the LTC factory.

Table 1. Typical Performance Summary

PARAMETER	CONDITION	VALUE
Steady State Input Voltage Range	$V_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }} \leq 1 \mathrm{~A}$	$7.5-25 \mathrm{~V}$
Maximum Transient Input Voltage		60 V
$\mathrm{~V}_{\text {OUT }}$	$\mathrm{I}_{\text {OUT }} \leq 1 \mathrm{~A}$	$5 \mathrm{~V} \pm 3 \%$
Maximum Output Current		1 A
Typical Switching Frequency		500 kHz
Typical Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=1 \mathrm{~A}$	83%

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 423
 1A, 500KHZ HIGH VOLTAGE BUCK CONVERTER

PUICK START PROCEDURE

Demonstration circuit 423 is easy to set up to evaluate the performance of the LT1956. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

Make sure that the input voltage does not exceed 60V.
The synchronization and shutdown functions are optional and their pins can be left floating (disconnected) if their functions are not being used.

1. Connect the $7.5 \mathrm{~V}-25 \mathrm{~V}$ input power supply to the Vin and Gnd terminals on the board.
2. After all connections are made, turn on input power and verify that the output voltage is 5.0 V .

Figure 1. Proper Measurement Equipment Setup

CUSTOMIZING THE BOARD

The components assembled on the board are optimized for a wide input voltage range and a 5 V output. The bandwidth can be increased for more specific input voltages such as $12 \mathrm{~V} \pm 10 \%$ or $18 \mathrm{~V}-24 \mathrm{~V}$ with 36 V transient if desired (just a few examples). The adjustable feedback resistors allow the output voltage to be customized. For output voltages below 3.0V, the boost diode should be moved from D2 to D3 to provide the minimum boost voltage required for the internal power switch. Make sure that the boost capacitor (C8) has a voltage rating greater than or equal to the output voltage for applications where the boost diode is placed in D2. However, the boost capacitor must have a voltage rating greater than the input voltage whenever the boost diode is placed in position D3.
D4 is an optional boost voltage "blocking" diode. For custom applications in which the output voltage is significantly greater than 5 V , this blocking diode reduces the boost driver voltage, reducing the power (and thus heat) dissipation inside the IC. It is recommended that a CMHZ5236B zener diode is used in D4 when $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$ and the junction temperature is hot without the use of the Zener. Note that in order to properly install D4, the small trace connecting the anode and cathode of D4 on the board must be separated (an Exacto knife works well) before D4 is soldered to the board.

Figure 2. Efficiency

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 423
 1A, 500KHZ HIGH VOLTAGE BUCK CONVERTER

NOTE: UNLESS OTHERWISE SPECIFIED

1. ALL RESISTORS ARE IN OHMS, 0603.

ALL CAPACITORS ARE IN MICROFARADS, 0603.
2. ALL OPTIONAL COMPONENTS WILL HAVE NO COMPONENT OUTLINE ON BOARD EXCEPT Q1, R5, R6, AND C9.

Figure 3. Demo Circuit Schematic

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

