DESCRIPTION

Demonstration circuit 457B features the LTC3727-1 in a dual output-5V/4A and 12V/3A-low EMI, 2-phase, adjustable, dual switching regulator controller application.
Operating the two high side MOSFETs 180 degrees out of phase significantly reduces peak input ripple current; thereby reducing radiated and conducted EMI. External parts count; cost and size are minimized in this design. Both controllers have overcurrent latch-off, which can be externally disabled, as well as internal current foldback for overload situations. A soft latch for overvoltage conditions is also provided. In addition to the two high cur-
rent outputs, on-chip $7.5 \mathrm{~V} / 50 \mathrm{~mA}$ and $3.3 \mathrm{~V} / 25 \mathrm{~mA}$ linear regulators are also included. In the optional standby mode, these internal regulators are capable of powering external system wake-up circuitry when both high current controllers are shut down. Two light load modes of operation are available: Burst Mode operation offers highest efficiency, whereas burst disable mode provides low noise, constant frequency operation down to 1% of maximum designed load. The controller can operate at up to 99% duty cycle for very low dropout capability.
Design files for this circuit board are available. Call the LTC factory.

Table 1. Performance Summary (Operating Temperature Range: $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$)

PARAMETER	CONDITION	VALUE
Input Voltage Range	If the input voltage must exceed 25 V , use higher voltage rating input capacitors and MOSFETs. The IC works up to 36 V . If $12 \mathrm{~V}, 3 \mathrm{~A}$ is needed for lower than 15 V input voltage, reduce the sense resistor value.	15 V to 25 V
Outputs	$\mathrm{V}_{\text {OUT1 }}=5 \mathrm{~V}, 0 \mathrm{~A}$ to 4A	$5 \mathrm{~V} \pm 3 \%$
	$V_{\text {OUT2 }}=12 \mathrm{~V}, 0 \mathrm{~A}$ to 3 A	$12 \mathrm{~V} \pm 3 \%$
	7.5V Linear Regulator	$7.5 \mathrm{~V} \pm 4 \%$
	3.3V Linear Regulator	$3.3 \mathrm{~V} \pm 4 \%$
Typical Output Ripple (VOUT1)	$10 \mathrm{MHz} \mathrm{BW}, 4 \mathrm{~A}$ load, $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$, frequency $=530 \mathrm{kHz}$	20 mV P-P
Typical Output Ripple (VOUT2)	$10 \mathrm{MHz} \mathrm{BW}, 3 \mathrm{~A}$ load, $\mathrm{V}_{\mathrm{IN}}=15 \mathrm{~V}$, frequency $=530 \mathrm{kHz}$	$10 \mathrm{mVP-P}$
Typical Operating Frequency	PLLLPF pin tied to 3.3V	530 kHz
Efficiency	$\mathrm{V}_{\text {IN }}=15 \mathrm{~V}, 5 \mathrm{~V}$ at $4 \mathrm{~A}, 12 \mathrm{~V}$ at 3 A	96\%

PUICK START PROCEDURE

Demonstration circuit 457B is easy to set up to evaluate the performance of the LTC3727-1. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:
1.Place RUNSS1 and RUNSS2 in OFF position, the FREQ jumper at the selected frequency and the FCB jumper in GND position.
2. Connect the desired loads between 5 V and 12 V terminals and their closest PGND terminals on the board.
note: The maximum load at 5 V is 4 A , and the maximum at 12 V is 3 A . Soldered wires should be used when the load current exceeds 1 A in order to achieve optimum performance.
3. Connect the input power supply to the VIN and GND terminals on the right, center of the board.
note: Do not increase $V_{\text {IN }}$ over 25 V . If the input voltage must exceed 25 V , use higher voltage rating input capacitors and MOSFETs. The IC works up to 36V. If

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 457B
 MULTI-PHASE SYSTEM POWER SUPPLY

$12 \mathrm{~V}, 3 \mathrm{~A}$ is needed for lower than 15 V input voltage, reduce the sense resistor value.
4. Switch on the desired channel(s) by removing the RUN/SS1 and/or RUN/SS2 jumper.
5. Measure the output voltages. They should be 5 V $\pm 0.1 \mathrm{~V}$ and $12 \mathrm{~V} \pm 0.24 \mathrm{~V}$ respectively, at each specified load current.

Figure 1. Proper Measurement Equipment Setup

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

