LTC3406/LTC3406B DC500 Description

Demonstration circuit DC500 is a constant-frequency step-down converter, using the LTC3406, or LTC3406B, monolithic synchronous buck regulators. The DC500 has an input voltage range of 2.7V to 5.5V, and is capable of delivering up to 600 mA of output current at minimum input voltage of 3V. In Burst Mode™ operation, which is the mode of low load current operation offered by the LTC3406, the DC500 supply current is typically only 25 uA at no load, and less than 1 uA in shutdown. In noise sensitive applications, the LTC3406B is available, which runs in pulse-skipping mode at low load currents. The DC500 is a very efficient circuit: up to 96%. These features, plus the LTC3406/LTC3406B coming in a tiny 5-pin ThinSOT package and having an operating frequency of 1.5 MHz (allowing the exclusive use of low profile surface mount components), make the DC500 demo board an ideal circuit for use in battery-powered, hand-held applications. **Design files for this circuit are available. Call the LTC Factory.**

LTC3406/LTC3406B DC500 Quick Start Guide

The DC500 demonstration board is easy to set up to evaluate the performance of the LTC3406/LTC3406B. One word of caution: when the board is right-side up (the title is legible at the top of the board), the output voltage turret is on the left side of the board, and the input voltage turret is on the right side of the board. Set up the circuit appropriately.

Please follow the procedure outlined below for proper operation.

- Connect the input power supply to the Vin and GND terminals on the right-side of the board. Do not hot-plug Vin or increase Vin over the rated maximum supply voltage of 5.5V, or the part may be damaged. Move the shunt at JP1 to the "ON" position. Refer to figure 1 for proper measurement equipment setup.
- 2. Connect the load between the Vout and GND terminals on the <u>left-side</u> of the board. Refer to figure 1 for proper measurement equipment setup.
- 3. To shut down the circuit, connect the RUN pin to ground by inserting the JP1 jumper into the upper position. Note the pull down resistor on the schematic and demo circuit assembly. Do not leave this pin floating.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP1300.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM
BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM

NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ