## QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 518 <br> SLIC POSITIVE INPUT TO NEGATIVE OUTPUT DC/DC CONVERTER

## DESCRIPTION

Demonstration circuit 518 is a positive input to negative output SLIC (Subscriber Line Interface Circuit) converter featuring the LTC3704 switching controller. DC518 converts 4.5 V to 15 V input to -24 V and -70 V output and provides over 200 mA of output current from a 5 V input. The converter operates at 200 kHz with high efficiency of up to $92 \%$. The DC518 is set to operate with current sense resistor RS1 and input voltages up to 15V. However, DC518 can be modified for NoRsense ${ }^{T M}$ operation with a 5 V input voltage, provided that MOSFET drain voltage does not exceed 36 V (main output set between 0 V and -24 V ). The
circuit features an optional soft-start circuit that can be enabled or disabled with a single jumper. DC518 has a jumper to program either continuous or Burst-Mode operation and can be synchronized to an external clock of up to 400 kHz . Please refer to the LTC3704 data sheet for design details and applications information.

The DC518 can produce up to 200 mA at both outputs from a 5 V input source.

Design files for this circuit board are available. Call the LTC factory.

Table 1. Performance Summary

| PARAMETER | CONDITION | VALUE |
| :--- | :--- | :--- |
| Minimum Input Voltage |  | 4.5 V |
| Maximum Input Voltage |  | 15 V |
| $\mathrm{~V}_{\text {OUT1 }}$ | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{I}_{\text {OUT1 }}=0 \mathrm{~A}$ to 0.2 A | $-24 \mathrm{~V} \pm 3 \%$ |
| $\mathrm{~V}_{\text {OUT2 }}$ | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=0 \mathrm{~A}$ to 0.2 A | $-70 \mathrm{~V} \pm 10 \%$ |
| Typical Output Ripple $\mathrm{V}_{\text {OUT1 }}$ | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{I}_{\text {OUT1 }}=0 \mathrm{~A}$ to 0.2 A | 200 mV P-P |
| Typical Output Ripple $\mathrm{V}_{\text {OUT2 }}$ | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$ to $15 \mathrm{~V}, \mathrm{I}_{\text {OUT2 }}=0 \mathrm{~A}$ to 0.2 A | 500 mV P-P |
| Nominal Switching Frequency |  | 200 kHz |

## PUICK START PROCEDURE

Demonstration circuit 518 is easy to set up to evaluate the performance of the LTC3704. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:
note: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the Vin or Vout and GND terminals. See Figure 2 for proper scope probe technique.

1. Place jumper JP1 in the Vin position. The "Pre Reg" position is an optional bias source for applications modified for Vin higher than 36V. A bias circuit including Q4 and D5 is installed on the board in order to facilitate modifications for higher Vin.
2. With power off, connect the input power supply to Vin and GND. Make sure that the input power supply has sufficient current rating at minimum input voltage for the required output load.

## 3. Turn on the power at the input.

## QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 518 <br> SLIC POSITIVE INPUT TO NEGATIVE OUTPUT DC/DC CONVERTER

nOTE: Make sure that the input voltage does not exceed 15V.
4. Check for the proper output voltages. $\mathrm{V}_{\text {our } 1}=-24 \mathrm{~V}$ and $\mathrm{V}_{\text {OUT2 }}=-70 \mathrm{~V}$

If there is no output, temporarily disconnect the load to make sure that the load is not set too high.


Figure 1. Proper Measurement Equipment Setup
5. Once the proper output voltage is established, adjust the load within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameter


Figure 2. Scope Probe Placement for Measuring Input or Output Ripple

# QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 518 <br> SLIC POSITIVE INPUT TO NEGATVE OUTPUT DC/DC CONVERTER 

## EXTERNAL CLOCK CONECTION

1. To use an external clock source, turn the input power source Off and remove the Burst Mode jumper.
2. Set the clock source pulse amplitude to 5 V and set the frequency between 220 kHz and 300 kHz .
3. Turn the clock source off.
4. Connect the clock source (pulse generator with TTL output) to the middle pin of the Burst Mode jumper.
5. Apply input power and observe the switching frequency of 200 kHz .
6. Turn the clock source ON and observe the switching frequency go up to the switching frequency of the external clock.

## USING NO-RSENSE MODE OF OPERATION

1. No-Rsense ${ }^{\mathrm{TM}}$ mode of operation can be used with an input voltage of 5 V . The 5 V input voltage combined with the -24 V main output will result in a sense pin voltage of 29 V , which is within the maximum rating of the sense pin of the LTC3704 controller. To use No -Rsense ${ }^{\mathrm{TM}}$ Mode of operation, the current sense resistor RS1 should be shorted out. Resistor R8 must be removed and resistor R7 should be installed.
2. Short out current sense resistor RS1.
3. Remove resistor R8.
4. Install $0 \Omega$ resistor R7.

3

## MONITORING MOSFET CURRENT

1. To monitor the MOSFET current through resistor RS1, connect a $50 \Omega$ coaxial cable across RS1 with the shield connected to the ground connection of RS1.
2. Connect the center conductor of the coaxial cable to the RS1 terminal that is connected to the source of MOSFET Q1. Use a $50 \Omega$ surface mount resistor in series with the center conductor.
3. Set the scope input to $50 \Omega$ and connect the coaxial cable to the scope.
4. Set the scope to $5 \mathrm{mV} /$ division or less. The current scale with $15 \mathrm{~m} \Omega$ for RS1 and $5 \mathrm{mV} /$ div will be $.66 \mathrm{~A} / \mathrm{div}$ ( $50 \Omega$ resistor at the input of coaxial cable forms a 2:1 divider with the $50 \Omega$ input impedance of scope).


## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

