DESCRIPTION

Demonstration circuit 552 is a quick way to try the LTC1420, and gives a clean, compact example of a PC board layout for the part. For a description of how the LTC1420 operates, please refer to the data sheet on the Linear Technology web-site.

QUICK START PROCEDURE

CONNECTING THE ANALOG POWER SUPPLIES

The part can run off of a single supply or dual supplies:

Single Supply: VDD=+5V, VSS=0V, GND=0V
Dual Supplies: VDD=+5V, VSS=-5V, GND=0V

CONNECTING THE DIGITAL OUTPUT POWER SUPPLY

OVDD is the supply for the digital output drivers on the part. VCC is the supply for the 74ACT16373 transparent latch that buffers the outputs. For best results, set $\mathrm{OVDD}=\mathrm{VCC}=+3 \mathrm{~V}$ to +5 V . Connect the ground of the digital output supply to GND.

SENSE PIN JUMPERS

JP1, JP2 and JP3 configure the SENSE pin, which sets the voltage reference, VREF.

JP1: SENSE=GND
VREF=4.096V
JP2: SENSE=VDD
VREF must be driven externally. Input impedance is about $1 \mathrm{k} \Omega$.
JP3: SENSE=VREF VREF=2.048V

Design files for this circuit board are available. Call the LTC factory.

LTC is a trademark of Linear Technology Corporation

GAIN PIN JUMPER

JP4 configures the GAIN pin, which sets the gain of the input PGA.

No jumper: GAIN pin is connected to the GAIN post. Drive externally with CMOS logic levels.
Left 2 pins: GAIN=GND PGA gain $=2 x$
Right 2 pins: GAIN=VDD PGA gain $=1 x$

DRIVING THE ANALOG INPUT

Apply the analog input signal to the +AIN BNC connector. The negative analog input can be driven at the -AIN BNC connector. For convenience, the negative analog input can also be connected to VCM or GND with JP5:

JP5 on left two pins: -AIN=GND Dual supply operation

JP5 on right two pins: -AIN=VCM (+2.5V) Single supply operation

The analog input range, Vin $=+$ AIN - -AIN is:
-VREF/2 < VIN < +VREF/2 for PGA gain=1x

- VREF/4 < VIN < +VREF/4 for PGA gain=2x

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 552
 12-BIT 10MSPS ADC

INPUT RC FILTER

For optimal AC performance, the LTC1420 should have an NPO capacitor across its analog input (C6). This capacitor can be used along with R18 as an input filter to reduce noise in the input signal.

DRIVING THE CLOCK INPUT

Apply the encode clock to the CLK BNC connector. For best performance, the clock should have low jitter and rise and fall times of less than 5 ns. R17 is a 50 Ohm resistor that terminates the clock to ground. R17 should be removed if the clock signal source cannot drive a 50 Ohm load.

DIGITAL OUTPUTS

The digital outputs appear at the 40-pin connector on the right side of the board. The signals are the twelve data bits, overflow, and a buffered version of the clock that can be used to latch the data. For best results all wires connected to the output bus should be as short as possible. The output-coding format is selected with JP6:

JP6 on top two pins: 2's complement JP6 on bottom two pins: straight binary

Figure 1. Proper Measurement Equipment Setup

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 552
 12-BIT 10MSPS ADC

3

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ AD9778A-DPG2-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ

