DESCRIPTION

Demonstration circuit 684A is a 48V Hot Swap ${ }^{\text {TM }}$ controller featuring the LT4256-3 in a 2 A application. The LT4256-3 is ideally suited for demanding power distribution control in $12 \mathrm{~V}, 24 \mathrm{~V}$ and 48 V applications for hot board insertion protection, high side power switching, and electronic circuit breaker functions. The LT4256-3 provides a rich set of features to support Hot Swap applications including:

- Overvoltage Shutdown
- Undervoltage Lockout
- Foldback Inrush Current Limiting
- Overcurrent Circuit Breaker with Programmable Cutout Time
- Programmable Output Voltage Ramp Rate
- Selectable Auto Retry or Latchoff on Overcurrent Faults
- Power Good Monitor
- Open MOSFET Detection

Available in a 16-lead SSOP package, the LT4256-3 is showcased on demonstration circuit 684A configured for a 48V, 2 A application. By changing a few passive components, 12 V and 24 V applications can easily be evaluated at up to 10A provided the thermal considerations of pass FET Q1 are taken into account.

Design files for this circuit board are available at http://www.linear.com/demo/DC684A
$\overline{\boldsymbol{L T}}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and Hot Swap is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

PERFORMANCE SUMMARY

Specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	CONDITION	VALUE
Minimum Input Voltage	Determined by UVLO	37 V
Maximum Input Voltage	Determined by TVS D2 Breakdown Voltage	76 V
Undervoltage L to H Threshold	UVLO Pin Threshold $4 \mathrm{~V} \pm 1 \%$	$36.3 \mathrm{~V} \pm 1.5 \%$
Overvoltage L to H Threshold	OVLO Pin Threshold $4 \mathrm{~V} \pm 1 \%$	$72.5 \mathrm{~V} \pm 1.5 \%$
Power Good L to H Threshold	FB L to H Threshold $4.45 \mathrm{~V} \pm 1 \%$	$44.9 \mathrm{~V} \pm 1.5 \%$
Power Good H to L Threshold	FB H to L Threshold $3.99 \mathrm{~V} \pm 1 \%$	$40.2 \mathrm{~V} \pm 1.5 \%$
Current Breaker Trip Point	$\left(\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {SENSE }}\right)=55 \mathrm{mV} \pm 20 \%$	$2.75 \mathrm{~A} \pm 20 \%$
Open Circuit Detection Threshold	$\left(V_{\text {CC }}-V_{\text {SENSE }}\right)<3 \mathrm{mV}$	$<150 \mathrm{~mA}$

DEMO MANUAL DC684A

QUICK START PROCEDURE

Demonstration circuit 684A is easy to set up to evaluate the performance of the LT4256-3. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:
Demonstration circuit 684A has two user configurable jumper options:

- J1 Retry: Set to ON for auto retry or OFF for latchoff on overcurrent faults.
- J2 LED Function: Select PWRGD or VOUT PRESENT. In the former position, LED D6 will only illuminate when the output voltage crosses the 44.9 V threshold. In the latter position, D6 will illuminate whenever Q1 is enhanced.

With power off, connect a nominal 48 V power supply capable of supplying 3A to the VIN and GND turrets.
Connect a logic level supply to the turrets labeled VLOGIC and GND to monitor the PWRGD state on the turret labeled PWRGD. This same supply can also be connected
to the turret Vmicro to monitor the OPEN pin on the turret labeled OPEN
NOTE: The OPEN and PWRGD pins are provided with separate supplies to facilitate connection of the PWRGD to a DC/DC power converter which may require a different voltage than the system processor which would monitor the OPEN state.

Connect a suitable load to the VOUT and GND turrets. This load can be an electronic load or power resistors (24W at 100 W for 2 A at 48 V) can be used.
NOTE: Because the LT4256 incorporates foldback current limiting, the nominal startup current supplied to the load is 700 mA and can be as low as 500 mA . This current limit increases linearly until the FB pin exceeds 2 V (VOUT > 20V). An electronic constant current load set to 2A will not permit the circuit to turn on unless it is gated on by the PWRGD signal (as would be the case with a DC/DC converter controlled by the PWRGD signal). Resistive loading will not have this problem.

Figure 1. Proper Measurement Equipment Setup

DEMO MANUAL DC684A

คUICK START PROCEDURE

Turn on the power supplies, verify the input voltage is 48 V . Verify the output voltage and the load current, the OPEN turret should present a logic LOW if the load current is $>150 \mathrm{~mA}$ and the PWRGD turret should present a logic HIGH. LED D5 and D6 should be illuminated.

With the circuit functioning, additional evaluations can now be performed. Test the undervoltage lockout and PWRGD functionality by reducing the input voltage below 35V. Observe the trip points of the PWRGD and undervoltage lockout. Increase the input voltage back to 48 V and again observe the trip point of the PWRGD.
The overvoltage function can also be tested, but be aware that if resistive loads are used, the value must be increased to 36Ω to prevent an overcurrent fault. This test can also be performed without a load.

Overcurrent faults can be evaluated by increasing the output load current and observing the overcurrent trip point.
Circuit Testing Notes: As in all high current testing, it is a good idea to use twisted pair power leads to minimize circuit inductance. Under step loads, significant voltage spikes can occur as a result of this inductance causing false overvoltage or undervoltage trips. If there is significant lead length between the power supply and the DC684A, add additional bulk capacitance across the VIN and GND turrets. This capacitance may also be needed if stepping the load results in significant voltage steps on the input, particularly if performing tests of the circuit breaker function.

DEMO MANUAL DC684A

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
Required Circuit Components				
1	1	CL	CAP, ELECTROLYTIC 10ヶF 100V 20\%	SANY0 100CV10FS
2	1	C1	CAP, X7R 0.01~F 100V 10\% 1206	AVX 12061C103KATMA
3	1	C2	CAP, X7R 0.033 F F 50V 5\% 0805	AVX 08055C333JAT
4	1	C3	CAP, X7R 0.1 $\mu \mathrm{F} 50 \mathrm{~V} 10 \% 0603$	TDK C1608X7R1H104K
5	1	C4	CAP, X5R 1^F 25V 20\% 1206	TAIYO YUDEN TMK316BJ105ML
6	1	D1	DIODE, DUAL, ZENER 300mW	DIODES INC. AZ23C11
7	1	D2	DIODE, TRANSIENT VOLTAGE SUPPRESSOR	DIODES INC. SMAT70A
8	1	D3	DIODE, 1N4148W SOD123	DIODES INC. 1N4148W
9	1	D4	DIODE, S1G 1A SMA	DIODES INC. S1G
10	2	D5, D6	LED, GREEN	PANASONIC LN1351C-(TR)
11	2	JP2, JP1	HEADER, 3PIN, 2mm	COMM CON 2802S-03G2
12	2	JP2, JP1	SHUNT	COMM CON CCIJ2MM-138G
13	4	J1, J3, J4, J5	JACK, BANANA	KEYSTONE 575-4
14	1	Q1	XSTR, HEXFET POWER MOSFET	INT. RECT. IRF540NS
15	1	R1	RES, 64.9k 1\% 1/4W 1206	AAC CRL18-6492FM
16	3	R2, R3, R9	RES, 4.02k 1\% 1/10W 0603	AAC CR16-4021FM
17	2	R11, R4	RES, 10k 5\% 1/2W 2010	AAC CR12-103JM
18	1	R5	RES, $0.02 \Omega 5 \% 1 \mathrm{~W} 2512$	IRC LRF2512-01-R020-J
19	1	R6	RES, $10 \Omega 1 \% 1 / 10 \mathrm{~W} 0603$	AAC CR16-10R0FM
20	1	R7	RES, $100 \Omega 5 \% 1 / 10 \mathrm{~W} 0603$	AAC CR16-101JM
21	1	R8	RES, 36.5k 1\% 1/4W 1206	AAC CRL18-3652FM
22	2	R10, R12	RES, 10k 5\% 1/10W 0603	AAC CR16-103JM
23	9	TP2, TP6, TP7-TP13	TURRET	MILL-MAX 2501-2
24	1	U1	IC, LT4256-3CGN HOT SWAP CONTROLLER	LINEAR TECH. LT4256-3CGN
25	0	U1-ALTERNATE	IC, LT4254CGN HOT SWAP CONTROLLER	LINEAR TECH. LT4254CGN

DEMO MANUAL DC684A

SCHEMATIC DIAGRAM

DEMO MANUAL DC684A

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPÓSE. EXCEPT TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).
No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

