QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 773 SYNCHRONOUS 1MHZ LUXEON III WHITE LED DRIVER

LTC3441 \& LTC2050

DESCRIPTION

Demonstration circuit 773 is a synchronous buck-boost 1MHz Luxeon III white LED driver featuring the LTC3441 and LTC2050. The board is optimized for 3.9V LED forward voltage output at 1000 mA load current and a single lithium-ion input voltage range of 3 V to 4.2 V . With its high frequency, synchronous buck-boost internal power switches, low quiescent current, 1 MHz switching frequency and thermally enhanced package, the LTC3441 is a very versatile and powerful IC for driving Luxeon III LEDs that require both step-up and step-down capability from lithium-ion supplies used in very compact handheld solutions.
The LTC3441 1MHz switching frequency allows all of the components to be small, surface mount devices. The current-mode control topology creates fast transient response and good loop stability with a minimum number of external components. The LED pushbutton is used to manually turn on the LED. The SHDTV terminal can be used to program pulses of light from an external source for certain flash applications. The DIM terminal can be used to program the LED for dimmer operation than 1A LED current using a external PWM signal. The
optional MODE/SYNC terminal can be used to synchronize the LTC3441 clock with an external clock.

The LTC2050 is used to control a constant LED current at the output with the minimum amount of power dissipation in the sense resistor. The five-pin LTC2050IS5 is used for minimum components and minimum pins, but the LTC2050IS6 with a shutdown pin can be used for extremely low quiescent current. [1]
The LTC3441 and LTC2050 datasheets give complete descriptions of the parts including operation and applications information. The datasheets must be read in conjunction with this Quick Start Guide for demonstration circuit 773. The LTC3441 is assembled in a small 10-pin thermally enhanced package with exposed pad. Lumileds' LXHL-PW09 Luxeon III LED emitter has an exposed pad slug for thermal enhancement. Proper board layout is essential for maximum thermal performance. The LXHL-PW09 datasheet is found on Lumileds website www.lumileds.com.

Design files for this circuit board are available. Call the LTC factory.

Table 1. Typical Performance Summary $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITION	VALUE
Input Voltage Range		3-4.2V
LED OFF Input Current [1]	VIN = 3.6V, U2 LTC2050IS6 w/ Shutdown [1]	$1.4 \mu \mathrm{~A}$
	VIN $=3.6 \mathrm{~V}$, U2 LTC2050IS5 w/out Shutdown [1]	1.08 mA
VLED	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to 4.2V, LED ON, $\mathrm{L}_{\text {LED }}=1000 \mathrm{~mA}$	3.9 V
ILED	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to 4.2V, LED ON	1000 mA
LED Ripple Current	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{LED}$ ON, I $\mathrm{IOUT}=1000 \mathrm{~mA}$	25 mAPK -PK
Switching Frequency	$\mathrm{V}_{\text {IN }}=3 \mathrm{~V}$ to 4.2V, LED ON	1MHz
Efficiency	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~L}$ LED $=1000 \mathrm{~mA}$, LED ON	84\%
LED Brightness	$\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~L}$ LED $=1000 \mathrm{~mA}$, LED ON	80LM

NOTE: [1] Replace LTC2050IS5 with LTC2050IS6 for low quiescent current during LED OFF. Tie $\overline{\text { SHDN }}$ pin of LTC2050IS6 to $\overline{\text { SHDN }}$ pin of LTC3441. DC773A is stuffed with LTC2050IS5 without a shutdown pin.

PUICK START PROCEDURE

Demonstration circuit 773 is easy to set up to evaluate the performance of the LTC3441 \& LTC2050. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:
note: Make sure that the input voltage does not exceed 4.2V.

NOTE: The shutdown function, dim function, and sync function are optional and their terminals can be left floating (disconnected) if not being used.

1. Connect the power supply (with power off), load, and meters as shown in Figure 1.
2. After all connections are made, turn on input power and verify that the LED turns on when the LED ON button is depressed.
NOTE: If the LED is not bright or not on, make sure that the current limit on the supply is not set too low.
3. Once the operation of the LED is established, adjust the supply within the operating range and observe the LED brightness, LED ripple, efficiency and other parameters.

Figure 1. Proper Measurement Equipment Setup

OPTIONAL fUNCTIONS

SHUTDOWN / SOFT-START

The LED ON pushbutton is used to manually demonstrate how bright the LXHL-PW09 LED is with 1000 mA of LED current. However, for some flash applications, a timed pulse is required. The SHDTV terminal is used to attach an external pulsed source to drive the LED at 1000 mA without pressing the LED ON pushbutton.
Please see the LTC3441 datasheet for the soft-start function and its implementation using the SHDN/SS terminal.

DIM

Demonstration Circuit 773 has a DIM terminal for dimming the LED. Typically the LED provides 80 LM with 1 A constant current. However, for less current, the DIM function may be used by switching in a lower resistance in the feedback path. Figure 2 demonstrates where to add the parallel dimming resistor. For 50% dimming,
use a 10.0 k resistor for RDIM. The scale of LED current versus the parallel impedance of RFB1 and RDIM is fairly proportional.

Figure 2. Implementation of the DIM function for lower LED current.

MODE / SYNCHRONIZATION OPTION

Burst mode is not used for the high current LED driver since the two states of the driver are high load current and shutdown. The Mode/Sync pin is tied to ground through the pads of R4 on the PCB. For use of the Mode/Sync functions, this connection to ground must be cut with an Exacto knife (cut the trace connected pins 1 and 2 of R4. Once the trace has been cut, the Mode/Sync pin can be reconnected to ground using a zero ohm resistor in R4 to disable its function.
The board can be externally synchronized between 1.15 MHz and 1.7 MHz using a synchronization signal twice the frequency of the desired switching frequency in the range of 2.3 MHz to 3.4 MHz . Please see the LTC3441 datasheet for details. For external synchronization, the connection to ground from the Mode/Sync pin must be severed as described above and R4 must be left unstuffed.

Figure 3. DC773 Typical Efficiency ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Figure 4. DC773 LED Forward Voltage Increases as Heatsink Temperature Increases.

Figure 5. DC773 Switch Waveforms and Inductor Current at $3.6 V_{\text {IN }}$ ($\mathrm{I}_{\text {LED }}=1000 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) CH2 is $\mathrm{V}_{\text {SW }}, \mathrm{CH} 3$ is $\mathrm{V}_{\mathrm{SW} 2}$, CH 4 is inductor current $500 \mathrm{~mA} / 10 \mathrm{mV} \Omega$

Figure 6. DC773 Switch Waveforms and Inductor Current at $3.0 \mathrm{~V}_{\text {IN }}\left(\mathrm{I}_{\mathrm{LED}}=1000 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ CH2 is $\mathrm{V}_{\mathrm{SW} 1}$, CH 3 is $\mathrm{V}_{\text {SW } 2}$, CH 4 is inductor current $1000 \mathrm{~mA} / 10 \mathrm{mV} \Omega$

Figure 7. $D C 773$ Switch Waveforms and Inductor Current at $4.2 \mathrm{~V}_{\text {IN }}\left(\mathrm{I}_{\text {LED }}=1000 \mathrm{~mA}, \mathrm{~V}_{I N}=4.2 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$
CH2 is $\mathrm{V}_{\mathrm{SW} 1}, \mathrm{CH} 3$ is $\mathrm{V}_{\mathrm{SW} 2}$, CH 4 is inductor current $500 \mathrm{~mA} / 10 \mathrm{mV} \Omega$

Figure 8. DC773 Turn-On Transient
($\mathrm{I}_{\text {LED }}=0 \mathrm{~mA}$ to $1000 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) CH3 is $\mathrm{V}_{\text {LED }}, \mathrm{CH} 4$ is $\mathrm{I}_{\text {LED }} 200 \mathrm{~mA} / 10 \mathrm{mV} \Omega$

Figure 9. DC773 Constant Low-Ripple LED Current ($\mathrm{I}_{\text {LED }}=1000 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) CH4 is $\mathrm{I}_{\text {LED }}$ $200 \mathrm{~mA} / 10 \mathrm{mV} \Omega$

Figure 10. DC773 Constant Low-Ripple LED Current (LEED $=1000 \mathrm{~mA}, \mathrm{~V}_{I N}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) CH4 is LeED (AC) $20 \mathrm{~mA} / 10 \mathrm{mV} \Omega$
 and reliable operation in the actual application, Component substitution and printed circuit board layout may significantly affect circuit performance or reliability. Contact Linear
Applications Engineering for assistance.

Linear Technology Corporation LTC3441EDE

Parts List

Item	Qty	Ref	Desc	Manufactu
1	1	C1	CAP, X5R 10uF 6.3V 20\% 0805	TDK C2012X5R0,
2	1	C2	CAP, X7R 10nF 16V 10\% 0402	AVX 0402YC1031
3	1	C3	CAP, X5R 22uF 6.3V 20\% 1206	TAIYO YUDEN JI
4	1	D1	LED, WHITE, LUXEON III EMITTER	LUMILEDS LXHL
5	2	D2,D3	DIODE, SCHOTTKY BARRIER	PHILIPS PMEG2
6	4	E1,E2,E3,E4	TURRETS	MILL-MAX-2501-2
7	0	R4,E5	DO NOT STUFF	OPTION
8	1	L1	INDUCTOR, 4.1uH	SUMIDA CDRH5
9	1	RFB1	RES, 10.0K OHMS 1\% 1/16W 0402	AAC CR05-1002F
10	1	RFB2	RES, 324K OHMS 1\% 1/16W 0402	AAC CR05-3243F
11	1	R1	RES, 51K OHMS 5\% 1/16W 0402	AAC CR05-513JN
12	1	R2	RES, 100K OHMS 1\% 1/16W 0402	AAC CR05-1003F
13	1	R3	RES, 0.033 OHMS 1\% 1/16W 0805	THIN-FILM RL12'
14	1	SW1	SWITCH, MOMENTARY, PUSH BUTTON	PANASONIC EVC
15	1	U1	IC, LTC3441EDE	LINEAR TECH. L
16	1	U2	IC, LTC2050IS5	LINEAR TECH. L
17	A/R		EPOXY, DP-190 3M GRAY 1.7FL.OZ. KIT	3M 021200-22647
			WITH 1:1 PLUNGER	
18	1		APPLICATOR, EPX PLUS II 3M 50mL	3M 021200-5000
19	1		NOZZLE, EPX PUS II MIX NOZZLE 50mL	3M VB 02100-500

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for LED Lighting Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MIC2870YFT EV ADP8860DBCP-EVALZ LM3404MREVAL ADM8843EB-EVALZ TDGL014 ISL97682IRTZEVALZ LM3508TLEV EA6358NH MAX16826EVKIT MAX16839EVKIT+ TPS92315EVM-516 MAX1698EVKIT MAX6956EVKIT+ OM13321,598 DC986A DC909A DC824A STEVAL-LLL006V1 IS31LT3948-GRLS4-EB 104PW03F PIM526 PIM527 MAX6946EVKIT+ MAX20070EVKIT\# MAX21610EVKIT\# MAX20090BEVKIT\# MAX20092EVSYS\# PIM498 AP8800EV1 ZXLD1370/1EV4 MAX6964EVKIT MAX25240EVKIT\# MAX25500TEVKITC\# MAX77961BEVKIT06\# 1216.1013 TPS61176EVM-566 TPS61197EVM TPS92001EVM-628 $\underline{1270} \underline{1271.2004} \underline{1272.1030} \underline{1273.1010} \underline{1278.1010} \underline{1279.1002} \underline{1279.1001} \underline{1282.1000} \underline{1293.1900} \underline{1293.1800} \underline{1293.1700} \underline{1293.1500}$

