DESCRIPTION

Demonstration circuit 793 is a single output, dual phase synchronous buck converter featuring the LTC3709EUH. The output voltage is 1.5 V with a load rating of 30 A and the input voltage range is 7 V to 24 V .

The combination of dual phase operation and valley current mode control allows the converter to have a fast load step recovery. A simple on-board dynamic load step circuit is provided for load step testing. Other features highlighted by demonstration circuit 793 include no $\mathrm{R}_{\text {SENSE }}{ }^{\text {TM }}$ operation, high efficiency at both heavy and light loads and rail tracking. Typical applications include desktop and notebook computers, FPGA systems, DSPs and servers.

An LT3010EMS8E-5 (5V / 50mA LDO) provides current for the LTC3709EUH's internal logic and gate drive circuitry. The 5V bias can also be supplied externally. For input voltages less than 5 V , the board contains a footprint for an LT1613 boost converter with a 5V output.
NOTE: If an external bias voltage is applied it needs to be between 4.2 V and 7.0 V .

Design files for this circuit board are available. Call the LTC factory.
PowerPath is a trademark of Linear Technology Corporation

Table 1. Performance Summary $\left(\mathrm{T}_{A}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITION	VALUE
Minimum Input Voltage		7 V
Maximum Input Voltage	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}$ to 24 V, IOUT $=0 \mathrm{~A}$ to 30 A	24 V
Output Voltage $\mathrm{V}_{\text {OUT }}$		$1.5 \mathrm{~V} \pm 2 \%$
Maximum Output Current	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=30 \mathrm{~A}(20 \mathrm{MHz} \mathrm{BW})$	30 A
Typical Output Voltage Ripple		25 mV P-P
Typical Switching Frequency	$\mathrm{V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=30 \mathrm{~A}$	310 kHz
Typical Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{IOUT}=30 \mathrm{~A}$	86.6%
$(+5 \mathrm{~V}$ bias supplied externally)	$\mathrm{V}_{\text {IN }}=7 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=30 \mathrm{~A}$	89.5%
Airflow	$\mathrm{T}_{\text {AMB }} \leq 50^{\circ} \mathrm{C}$	89.9%

PUICK START PROCEDURE

Demonstration circuit 793 is easy to set up to evaluate the performance of the LTC3709EUH. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

1. Place jumpers in the following positions: MODE SELECT TRACK CCM +5VSEL INT
LDO
2. With power off, connect the input power supply to Vin and GND.
3. Turn on the power at the input and set the input voltage to 12 V .
4. Check for the proper output voltage. VOUT should range from 1.47 V to 1.53 V .
5. Apply 30 A load and re-check the regulation.
6. Once the proper output voltages are established, adjust the load and input voltage within their respective operating range and test the output voltage regulation, output voltage ripple, efficiency, rail tracking, load step response and other parameters or features.

Figure 1. Proper Measurement Equipment Setup

LOAD STEP TESTING

The load step response can be tested with the onboard dynamic load circuit and a pulse generator. Refer to Figure 3 and follow the steps below to measure the load step response.

1. Set the output of the pulse generator for a duty cycle of less than 5% and an amplitude of 1 V or below.
2. Connect the output of pulse generator from Pulse Gen. to GND.
3. Connect the LOAD STEP BNC connector to an oscilloscope with a coaxial cable to monitor the load step current waveform. $10 \mathrm{mV}=1 \mathrm{~A}$.
4. Connect the VOUT TEST BNC connector to an oscilloscope with a coaxial cable to monitor the output voltage waveform.
5. Apply input voltage to demonstration circuit 793 and the desired amount of static load to the output.
6. Increase the amplitude of the pulse generator output to obtain the desired load step height.

RAIL TRACKING

To implement external coincident rail tracking, connect the track source between the TRACK and SGND turrets (see Figure 1). If $V_{\text {OUT }}$ does not need to track an external signal during startup, then place the jumper in the INT position. With the jumper in the INT position, Vout will track the RUN/SS voltage minus the on threshold during startup.

5V Bias Circiuts

Dynamic Load

6

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Power Management IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFL EV MIC5281YMME EV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL$\underline{1.8 E V / N O P B}$ LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ

