QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 821 300MHZ TO 11GHZ PRECISION DUAL RF POWER DETECTOR

LTC5533

DESCRIPTION

Demonstration circuit 821 is a precision dual RF power detector featuring the LTC[®]5533.

The LTC5533 is a dual channel RF power detector for RF applications operating in the 300MHz to 11GHz range. Two independent temperature compensated Schottky diode peak detectors and buffer amplifiers are combined in a small 4mm x 3mm DFN package.

The RF input voltage is peak detected using on-chip Schottky diodes. The detected voltage is buffered and supplied to the V_{OUT} pins. A power saving shut-

down mode reduces current to less than 2μ A/channel. The initial output starting voltages of 130mV±35mV can be precisely adjusted using the V_{OS} pins.

The LTC5533 operates with input power levels from -32dBm to 12dBm.

Design files for this circuit board are available. Call the LTC factory.

LTC is a trademark of Linear Technology Corporation

Table 1. Typical Performance Summary ($V_{CC} = 3.6V$, $\overline{SHDN} = 3V$, $T_A = 25$ °C, source impedance = 50 Ω , unless otherwise noted. Test circuit shown in Figure 2.)

PARAMETER	CONDITION	VALUE
V _{CC} Operating Voltage		2.7V to 6V
I _{VCC} Operating Current, per channel	I _{VOUT} = 0mA	0.45mA
I _{VCC} Shutdown Current, per channel	SHDN = LO	0.01µA
SHDN Voltage, Chip Disabled	V _{CC} = 2.7V to 6V	0.35V max
SHDN Voltage, Chip Enabled	V _{CC} = 2.7V to 6V	1.4V min
SHDN Input Current, per channel	SHDN = 3.6V	22µA
RF _{IN} Input Frequency Range		300MHz to 11GHz
RF _{IN} Input Power Range	RF Frequency = 300MHz to 7GHz, V _{CC} = 2.7V to 6V	-32dBm to 12dBm
Channel to Channel Isolation	f = 2GHz	45dB
V _{OS} Voltage Range		OV to 1V
V _{OS} Input Current	V _{OS} = 1V	-0.5µA to 0.5µA
V _{OUT} Start Voltage (No RF Input)	$R_{LOAD} = 2k\Omega, V_{OS} = 0V$	110mV to 150mV
	SHDN = LO	1mV
V _{OUT} Output Current	V _{OUT} = 1.75V, V _{CC} = 2.7V, ΔV _{OUT} < 10mV	4mA
V _{OUT} Load Capacitance		33pF max
V _{OUT} Bandwidth	$C_{LOAD} = 33 pF, R_{LOAD} = 2k\Omega$	2MHz
V _{OUT} Slew Rate	V_{RFIN} = 1V Step, C _{LOAD} = 33pF, R _{LOAD} = 2k Ω	3V/µs
V _{OUT} Noise	V_{CC} = 3V, Noise BW = 1.5MHz, 50 Ω RF Input Termination	1mV _{P-P}
V _{OUT} Enable Time	$\overline{\text{SHDN}}$ = LO to HI, C _{LOAD} = 33pF, R _{LOAD} = 2k	8µs

QUICK START PROCEDURE

Demonstration circuit 821 is easy to set up to evaluate the performance of the LTC5533. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

- 1. Connect all DC power supplies' negative (-) outputs to demo board Gnd test points (E5 and E10).
- 2. Connect V_{CC} DC power supplies' positive (+) outputs (2.7V to 6V) to demo board V_{CC} test points (E1 and E6).

NOTE: Do not exceed 6.5V, the absolute maximum supply voltage.

- 3. Connect V_{OS} DC power supplies' positive (+) outputs (0V to 1V) to demo board V_{OS} test points (E3 and E9).
- 4. Connect voltmeters' negative (-) leads to demo board Gnd test points (E5 and E10).

- Connect voltmeters' positive (+) leads to the demo board Vout test points (E2 and E7).
- Connect RF signal generators' outputs to demo board RF in ports (SMA connectors J1 and J2) via coaxial cables.
- 7. Using jumper cables, connect demo board V_{CC} test points (E1 and E6) to SHDN test points (E4 and E8). Now both the detectors are enabled (on) and are ready for measurement.

NOTE: Make sure that the power is not applied to the SHDN test points before it is applied to the V_{CC} test points. The voltages on the SHDN test points must never exceed V_{CC}.

8. Apply RF input signals and measure Vout DC voltages.

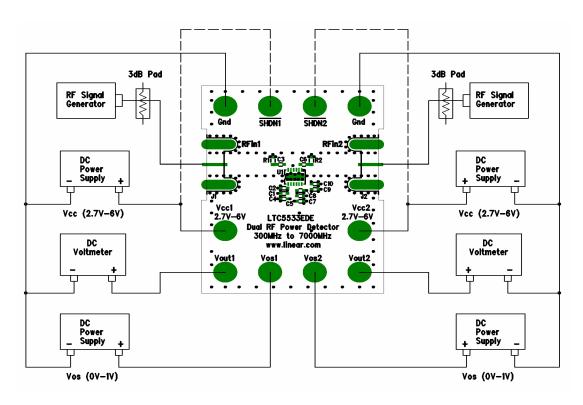
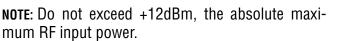
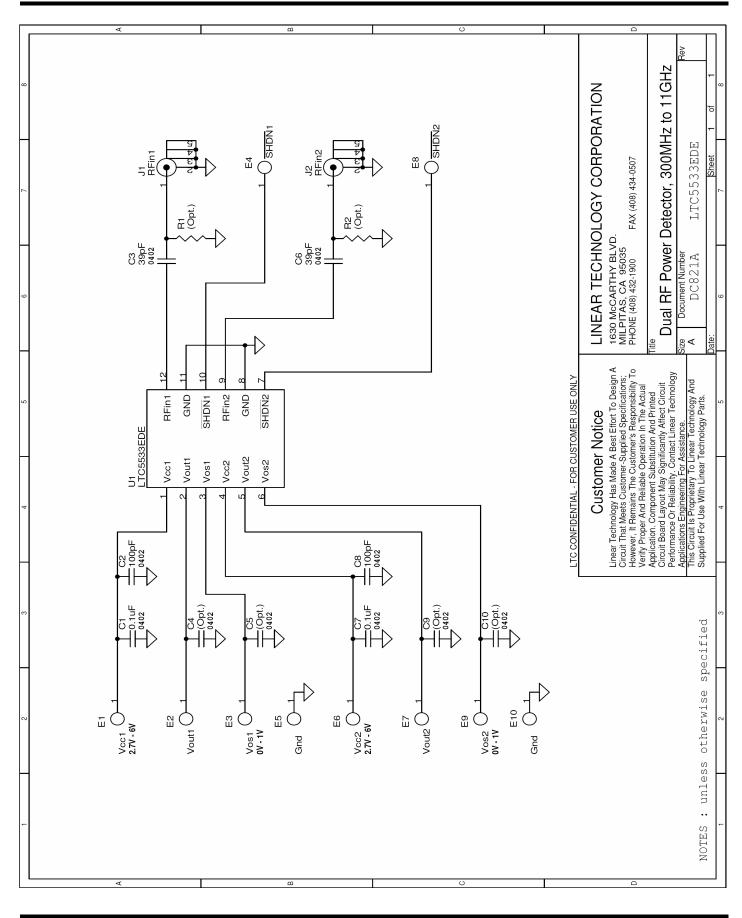




Figure 1. Proper Measurement Equipment Setup

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 821 300MHZ TO 11GHZ PRECISION DUAL RF POWER DETECTOR

LINEAR TECHNOLOGY

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1