## DESCRIPTION

Demonstration circuit 827 is a 1.8 V to 5.5 V RS-232 Dual Transceiver featuring the LTC2803 and LTC2804.

| VERSION | P/N |
| :--- | :--- |
| DC827A-A | LTC2803CDHC |
| DC827A-B | LTC2804CDHC |

Design files for this circuit board are available. Call the LTC factory.
$\boldsymbol{\mathcal { C Y }}$, LTC and LT are registered trademarks of Linear Technology Corporation. ThinSOT and
PowerPath are trademarks of Linear Technology Corporation.


## PGRFORMANCE SUMMARY

| SYMBOL | PARAMETER | CONDITIONS | MIN | TYP | MAX | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{\text {CC }}$ | Input Supply Voltage |  | 1.8 |  | 5.5 | V |
| $V_{L}$ | Logic Supply Voltage |  | 1.8 |  | 5.5 | V |
| SR(D) | Driver Slew Rate | $\begin{gathered} \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, 50 \mathrm{pF}<\mathrm{C}_{\mathrm{L}}<2.5 \mathrm{nF} \\ \text { LTC2803: } \\ \text { LTC2804: } \end{gathered}$ | $\begin{aligned} & 4 \\ & 4 \end{aligned}$ |  | $\begin{gathered} 30 \\ 150 \end{gathered}$ | V/ $/$ s <br> V/us |
| -- | Maximum Data Rate | $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=2.5 \mathrm{nF} \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=1.0 \mathrm{nF} \\ & \mathrm{R}_{\mathrm{L}}=3 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF}(\mathrm{LTC} 2804) \end{aligned}$ | $\begin{gathered} \hline 100 \\ 250 \\ 1000 \\ \hline \end{gathered}$ |  |  | kbps <br> kbps <br> kbps |

## JUMPGRS

| SCH | NAME | PURPOSE |
| :---: | :---: | :---: |
| $\begin{aligned} & \mathrm{JP1}, \\ & \text { JP2 } \end{aligned}$ | $\begin{aligned} & \text { MODE, } \\ & \text { PS } \end{aligned}$ | Mode control, as follows:   <br> $\underline{\text { PS }}$ MODE MODE NAME <br> OFF L Shutdown <br> OFF H Receivers Active <br> ON L Drivers Disabled <br> ON H Normal |
| JP3 | $\begin{aligned} & \hline \text { LOGIC } \\ & \text { SUPPLY } \end{aligned}$ | Selects supply for VL pin. Use setting "VL" for a separate logic supply, or "VCC" to share a single supply. |
| $\begin{aligned} & \text { JP4, } \\ & \text { JP5 } \end{aligned}$ | TD/RD, RTS/CTS | Selects Receiver loopback mode, for use with the DB9 connector. In this configuration, R10UT is connected to T1IN and R2OUT is connected to T2IN. |


| SCH | NAME | PURPOSE |
| :--- | :--- | :--- |
|  |  | For the UART connected to the DB9, this wraps TD <br> back to RD and RTS back to CTS. |

## QUICK START PROCGDURE

Demonstration circuit 827 is easy to set up for evaluating the LTC2803 and LTC2804. Refer to Figure 1 or Figure 2 for proper setup and follow the procedure below:

1. Place jumpers in the following positions:

| JP1 | MODE | H |
| :--- | :--- | :--- |
| JP2 | PS | ON |

2. With power off, connect the primary power supply to VCC and GND.
3. Set JP3 "Logic Supply" to the correct position. If a separate logic supply isn't needed, use the "VCC" selting. If a separate Logic Supply will be used, use the "VL" selting and, with the power off, connect the supply to VL and GND.
4. For transmitter loopback mode (Figure 1), connect each driver outputto a receiverinput. Connect input sources to the driver inputs. (Make sure that input voltages don't exceed 7V.) Omit Loopback jumpers JP4 and JP5 for this mode.
5. Altematively, to operate the part in receiverloopback mode (Figure 2), connect a 9-wire RS-232 cable between DB9 connector J1 and the serial port of a computer. Place jumpers in the two LOOPBACK positions:
JP4 TD/RD
JP5 CTS/RTS
Data may be transmitted and monitored using a terminal emulation program such as Terminal, HyperTerminal, Tera Term Pro, or RealTerm.
6. Turn on the input supply/supplies in any order. (Note: Make sure that the voltage doesn't exceed 7V.)
7. Check for the proper generated supply voltages: $\mathrm{VDD}=6.5 \mathrm{~V}$ to 7.5 V , and $\mathrm{VEE}=-6.8 \mathrm{~V}$ to -5.8 V .
8. Send data!

## Notes:

1. Inputs $P S$ and MODE may be driven by signals instead of set with jumpers. If done, ensure that the voltage of PS doesn't exceed VL.
2. The terminal emulation program RealTerm can lock up when RTS/CTS flow control is used in receiver loopback mode.


Figure 1. Setup for Transmitter Loopback Mode


Figure 2. Setup for Receiver Loopback Mode


## X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Interface Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
DP130SSEVM ISO3086TEVM-436 ADP5585CP-EVALZ CHA2066-99F AS8650-DB I2C-CPEV/NOPB ISO35TEVM-434
XR18910ILEVB XR21B1421IL28-0A-EVB EVAL-ADM2491EEBZ MAXREFDES23DB\# MAX9286COAXEVKIT\# MAX3100EVKIT MAX13235EEVKIT MAX14970EVKIT\# XR21B1424IV64-0A-EVB CMOD232+ MAX13042EEVKIT+ MAX14838EVKIT\# MAX9205EVKIT DS100BR111AEVK/NOPB DC241C MAX9286RCARH3DB\# MAX13035EEVKIT+ DC1794A SN65HVS885EVM EVB81112-A1 DFR0257 ZLR964122L ZLR88822L DC196A-B DC196A-A DC327A OM13585UL MAX16972AGEEVKIT\# MARS1-DEMO3-ADAPTER-GEVB PIM511 PIM536 PIM517 DEV-17512 STR-FUSB3307MPX-PPS-GEVK MAXREFDES177\# EVALADN4654EBZ MAX9275COAXEVKIT\# MAX2202XEVKIT\# MAX13171EEVKIT+ MAX7322EVKIT+ MAX9281COAXEVKIT\# MAX96715COAXEVKIT\# ZSSC3240KIT

