QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 862 MICROPWER REGULATED CHARGE PUMP DC/DC CONVERTER LTC3221-3.3, LTC3221-5 and LTC3221

DESCRIPTION

Demonstration circuit 862 is a micropower regulated charge pump DC/DC converter with the LTC3221 in a 2mmx2mm DFN package. It comes in three assembly versions, DC862A-A, DC862A-B and DC862A-C, featuring LTC3221EDC-3.3, LTC3221EDC-5, and LTC3221EDC, respectively. The DC862A-A generates a fixed 3.3V output. The DC862A-B generates a fixed 5V output. The DC862A-C generates a programmable regulated 3V output. The maximum output current is **60mA**.

The LTC3221 draws ultra low quiescent current at no load to extend battery life. The quiescent current is even lower than the self-discharging current of many batteries. By adopting a constant current to charge the output, the output ripple is low even at high input and light load and is rather constant over the full input voltage range. This minimizes output capacitor size and reduces solution cost and space. Built-in soft-start prevents excessive inrush current at turn-on and short-circuit current limit/thermal protection helps the part survive continuous short-circuit. All these features make the circuit ideal for the low power and space-constrained applications in battery powered portable systems.

Design files for this circuit board are available. Call the LTC factory.

LTC is a trademark of Linear Technology Corporation

PARAMETER	CONDITION		MINIMUM	TYPICAL	MAXIMUM
Input Voltage Range	DC862A-A		1.8V		4.4V
	DC862A-B		2.7V		5.5V
	DC862A-C		1.8V		3.8V
Maximum Output Current	DC862A-A: V _{IN} > 2V; DC862A-B: V _{IN} > 3V;			60mA	
	DC862A-C: V _{IN} > 1.8V				
Output Voltage V _{OUT}	DC862A-A	V _{IN} > 2V, I _{OUT} < 60mA	3.168	3.3	3.432
		1.8V < V _{IN} < 2V, I _{OUT} < 25mA			
	DC862A-B	V _{IN} > 3V, I _{OUT} < 60mA	4.8	5	5.2
		2.7V < V _{IN} < 3V, I _{OUT} < 25mA			
	DC862A-C	V _{IN} > 1.8V, I _{OUT} < 60mA	2.88	3	3.12
Output Ripple V _{OUT}	I _{OUT} = 0mA	DC862A-A V _{IN} = 4.4V			40mV _{P-P}
	(20MHz BW)	DC862A-B V _{IN} = 5.5V			90mV _{P-P}
	I _{OUT} = 60mA	DC862A-C V _{IN} = 3.8V			57mV _{P-P}
Nominal Switching Frequency				600kHz	
Efficiency	DC862A-A	V _{IN} = 2V, I _{OUT} = 60mA	82%		
	DC862A-B	V _{IN} = 2.7V, I _{OUT} = 60mA	86%		
	DC862A-C	V _{IN} = 1.8V, I _{OUT} = 60mA		82.8%	

Table 1. Performance Summary $(T_A = 25^{\circ}C)$

QUICK START PROCEDURE

Demonstration circuit 862 is easy to set up to evaluate the performance of the LTC3221EDC-3.3, LTC3221EDC-5, and LTC3221EDC. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

NOTE: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the Vin or Vout and GND terminals. See Figure 2 for proper scope probe technique.

- **1.** Place jumper JP1 to the ON position.
- With power off, connect a 1.8V-5.5V power supply to Vin and GND. The supply should be capable of providing 200mA current.
- 3. Connect a load to Vout and GND.

4. Turn on the power at the input.

NOTE: Make sure that the input voltage does not exceed the corresponding maximum voltage (e.g. 4.4V for DC862A-A, 5.5V for DC862A-B, 3.8V for DC862A-C).

 Check for the proper output voltages. For DC863A-A, Vout should be within 3.168V to 3.432V. For DC862A-B, Vout should be within 4.8V to 5.2V. For DC862A-C, Vout is should be within 2.88V to 3.12V.

NOTE: If there is no output, temporarily disconnect the load to make sure that the load is not set too high.

6. Once the proper output voltages are established, adjust the loads within the operating range and observe the output voltage regulation, ripple voltage, efficiency and other parameters.

Figure 1. Proper Measurement Equipment Setup

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 862 MICROPWER REGULATED CHARGE PUMP DC/DC CONVERTER

Figure 2. Measuring Input or Output Ripple

OPERATION PRINCIPLES

The LTC3221 family regulator uses a switched capacitor charge pump to boost Vin to a regulated output voltage. Regulation is achieved by monitoring the output voltage, Vout, using a comparator and keeping it within a hysteresis window. If Vout drops below the lower trip point, Vout is charged by the controlled current in series with the flying capacitor. Once Vout goes above the upper trip point, the flying capacitor is disconnected from Vout. Vout is discharged and the flying capacitor is then replenished by the controlled current for a certain time. Once the lower threshold is reached, Vout is charged by the controlled current again.

Burst Mode operation, soft-start and short-circuit /thermal protection can be found on the LTC3221 data-sheet at www.linear.com.

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 862 MICROPWER REGULATED CHARGE PUMP DC/DC CONVERTER

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for Power Management IC Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below :

EVAL-ADM1168LQEBZ EVB-EP5348UI MIC23451-AAAYFLEV MIC5281YMMEEV DA9063-EVAL ADP122-3.3-EVALZ ADP130-0.8-EVALZ ADP130-1.2-EVALZ ADP130-1.5-EVALZ ADP130-1.8-EVALZ ADP1714-3.3-EVALZ ADP1716-2.5-EVALZ ADP1740-1.5-EVALZ ADP1752-1.5-EVALZ ADP1828LC-EVALZ ADP1870-0.3-EVALZ ADP1871-0.6-EVALZ ADP1873-0.6-EVALZ ADP1874-0.3-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2102-1.25-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP1882-1.0-EVALZ ADP199CB-EVALZ ADP2106-1.8-EVALZ ADP2102-1.875EVALZ ADP2102-1.8-EVALZ ADP2102-2-EVALZ ADP2102-3-EVALZ ADP2102-4-EVALZ ADP2106-1.8-EVALZ ADP2147CB-110EVALZ AS3606-DB BQ24010EVM BQ24075TEVM BQ24155EVM BQ24157EVM-697 BQ24160EVM-742 BQ24296MEVM-655 BQ25010EVM BQ3055EVM NCV891330PD50GEVB ISLUSBI2CKIT1Z LM2744EVAL LM2854EVAL LM3658SD-AEV/NOPB LM3658SDEV/NOPB LM3691TL-1.8EV/NOPB LM4510SDEV/NOPB LM5033SD-EVAL LP38512TS-1.8EV EVAL-ADM1186-1MBZ EVAL-ADM1186-2MBZ