QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 910A HIGH SIGNAL LEVEL DOWNCONVERTING MIXER WITH DISCRETE IF BALUN

DESCRIPTION

Demonstration circuit 910A is optimized for evaluation of the LT5557 active downconverting mixer with discrete IF output balun for lower cost applications. Its RF input and LO input ports are internally matched to 50Ω, from 1.6 to 2.3 GHz , and from 1 to 5 GHz , respectively. The IF output is 50Ω matched to 240 MHz using a discrete balun. Compared to the transformer-based matching technique, the discrete balun approach yields narrower IF output bandwidth, higher conversion gain, and slightly degraded IIP3 and noise figure.

The LT5557 active mixer is optimized for high linearity, wide dynamic range downconverter applications. The IC includes a high-speed differential LO buffer amplifier driving a double-balanced mixer. Broadband, inte-
grated transformers on the RF and LO inputs provide single-ended 50Ω interfaces. The differential IF output allows convenient interfacing to differential IF filters and amplifiers, or is easily matched to drive a singleended 50Ω load, with or without an external transformer.

The LT5557's high level of integration minimizes the total solution cost, board space and system-level variation.
Design files for this circuit board are available. Call the LTC factory.
$\boldsymbol{\boxed { }}$, LT, LTC, and LM are registered trademarks of Linear Technology Corporation.

Table 1. Typical Demonstration Circuit Performance Summary ($\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{EN}=\mathrm{High}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{RF}}=1950 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm}, \mathrm{f}_{\mathrm{LO}}=$ $1710 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=-3 \mathrm{dBm}$, IF output measured at 240 MHz , unless otherwise noted. Test circuit shown in Figure 2.)

PARAMETER	CONDITION	VALUE
Supply Voltage		2.9 to 3.9V
Total Supply Current	$\mathrm{EN}=\mathrm{High}(>2.7 \mathrm{~V})$	81.6 mA
Maximum Shutdown Current	$\mathrm{EN}=$ Low (<0.3V)	$100 \mu \mathrm{~A}$
RF Input Frequency Range	Return Loss > 12dB	1600 to 2300 MHz
LO Input Frequency Range	Return Loss > 10dB	1000 to 4200 MHz
IF Output Frequency Range	Return Loss > 10dB	220 to 260MHz
LO Input Power		-8 to 2dBm
Conversion Gain		2.9 dB
Input 3rd Order Intercept	2 RF tones, $-6 \mathrm{dBm} /$ tone, $\Delta \mathrm{f}=1 \mathrm{MHz}$	24.7 dBm
Single-Sideband Noise Figure		11.7 dB
LO to RF Leakage		<-45dBm
LO to IF Leakage		<-42dBm
RF to LO isolation		$>42 \mathrm{~dB}$
RF to IF isolation		$>41 \mathrm{~dB}$
2RF-2LO Output Spurious Product $\left(f_{R F}=f_{L O} \pm f_{f F} / 2\right)$	$\mathrm{F}_{\mathrm{RF}}=1830 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm}, \mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz}$	-53dBc
3RF-3LO Output Spurious Product $\left(f_{R F}=f_{L O} \pm f_{\mathrm{IF}} / 3\right)$	$\mathrm{F}_{\mathrm{RF}}=1790 \mathrm{MHz}, \mathrm{P}_{\mathrm{RF}}=-6 \mathrm{dBm}, \mathrm{f}_{\mathrm{IF}}=240 \mathrm{MHz}$	-70dBc
Input 1dB Compression		8.8 dBm

APPLICATION NOTG

ABSOLUTE MAXIMUM INPUT RATING
Supply Voltage ($\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}$, IF^{+}, IF-) 4 V
Enable Voltage \qquad .-0.3 V to $\mathrm{V}_{C C}+0.3 \mathrm{~V}$
LO Input Power \qquad $+10 \mathrm{dBm}$
LO Input DC Voltage-1V to $\mathrm{V}_{\text {CC }}+1 \mathrm{~V}$
RF Input Power +12 dBm
RF Input DC Voltage..................................... $\pm 0.1 \mathrm{~V}$

CAUTION: This part is sensitive to electrostatic discharge (ESD). Observe proper ESD precautions when handling the LT5557.

FREQUENCY RANGE

Demonstration circuit 910A is optimized for evaluating the LT5557 IC for downconverting a RF signal in the frequency range of 1.6 GHz to 2.3 GHz to a 240 MHz IF frequency with either low-side or high- side LO injection.
The LT5557's RF input is internally matched to 50Ω from 1.6 GHz to 2.3 GHz with better than 12 dB return loss. Its LO input port is internally matched to 50Ω from 1 GHz to 5 GHz with better than 10 dB return loss. The frequency range of both ports is easily extended with simple external matching. Please refer to the LT5557 datasheet Applications Information section.
Demonstration circuit 910A utilizes a low cost discrete balun for narrowband IF output matching to 240 MHz . Component values for other IF frequencies can be calculated using equations given in the datasheet Applications Information section.

PUICK START PROCEDURE

Demonstration circuit 910A is easy to set up to evaluate the performance of the LT5557. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:

TEST EQUIPMENT AND SETUP

Refer to Figure 1 for proper measurement equipment setup.
Use high performance signal generators with low harmonic output for 2-tone measurements. Otherwise, low-pass filters at the signal generator outputs should be used to suppress higher-order harmonics.
High quality combiners that provide broadband 50Ω termination on all ports and have good port-to-port isolation should be used. Attenuators on the outputs of the signal generators are recommended to further improve source isolation, to prevent the sources from modulating each other and generating intermodulation products.

Spectrum analyzers can produce significant internal distortion products if they are overdriven. Generally, spectrum analyzers are designed to operate at their best with about -30 dBm to -40 dBm at their input. Sufficient spectrum analyzer input attenuation should be used to avoid saturating the instrument.
Before performing measurements on the DUT, the system performance should be evaluated to ensure that: 1) a clean input signal is obtained, and 2) the spectrum analyzer internal distortion is minimized.

Note 1: Care should be taken to never exceed absolute maximum input ratings.

Note 2: DC power should never be applied to the EN pin before it is applied to the $V_{C C}$ pin.

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 910A HIGH SIGNAL LEVEL DOWNCONVERTING MIXER WITH DISCRETE IF BALUN

1. Connect all test equipment as shown in Figure 1.
2. Apply 3.3 V DC supply power, and verify that the current consumption is approximately 81.6 mA .
3. Apply RF and LO input signals to perform AC measurements.
4. Set the LO signal generator (\#1) to provide a $1710 \mathrm{MHz},-3 \mathrm{dBm}$, CW signal to the demo board LO IN port.
5. Set the RF signal generators (\#2 and \#3) to provide two -6dBm CW signals to the demo board RF IN port—one at 1950 MHz , and the other at 1951 MHz .
6. Set the Spectrum Analyzer's frequency range to capture the 240 MHz IF output. Sufficient spectrum analyzer input attenuation should be used to avoid saturating the instrument.
7. Conversion gain and Input $3^{\text {rd }}$ order intercept can be measured:
a. $\mathrm{Gc}=\mathrm{P} 1-\mathrm{Pin}$
b. IIP3 $=(\mathrm{P} 1-\mathrm{P} 3) / 2+$ Pin

Where P1 is the lowest power level of the two fundamental output tones at either 240 MHz or at 241 MHz , P3 is the largest $3^{\text {rd }}$ order product at either 239 MHz or at 242 MHz , and Pin is the input power (in this case, -6 dBm). All units are in dBm .
8. To measure the 2RF-2LO output spurious product, turn off signal generator 3. Set signal generator 2 to $f_{R F}=f_{L O}+f_{I F} / 2$. In this case, $f_{R F}=1710 \mathrm{MHz}+$ $240 \mathrm{MHz} / 2=1830 \mathrm{MHz}$. Then the desired output would be at 120 MHz , and the 2RF-2LO output spur would be at 240 MHz . The dBc difference between the two outputs is the 2RF-2LO output spurious product.
9. Follow the same procedure for 3RF-3LO output spurious product measurement. This time, set signal generator 2 to $f_{R F}=f_{L O}+f_{I F} / 3=1710 \mathrm{MHz}+$ $240 \mathrm{MHz} / 3=1790 \mathrm{MHz}$. The desired output would be at 80 MHz , and the 3RF-3LO output spur would be at 240 MHz . The dBc difference between the two outputs is the 3RF-3LO output spurious product.
10. Measure RF to LO isolation, LO leakages, and Input 1dB compression.
11.Single-Sideband Noise Figure can be measured on a noise figure meter. Refer to noise figure meter manual for instructions. Be sure to use a high quality signal generator and a band-pass filter on the LO input. A band-pass filter on the RF input port is required for image suppression.

Figure 1. Proper Measurement Equipment Setup

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1

