QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 966
 HIGH LINEARITY DIRECT QUADRATURE MODULATOR

LT5568

DESCRIPTION

Demonstration circuit 966 is an I/Q modulator featuring the $\mathrm{LT}^{\circledR} 5568$. The $\mathrm{LT}^{\circledR} 5568$ is a 700 MHz to 1.05 GHz direct I / Q modulator designed for high performance wireless applications, including wireless infrastructure. It may also be configured as an image reject upconverting mixer, by applying 90° phaseshifted signals to the I and Q inputs.
A high-speed, internally matched LO amplifier drives two double-balanced mixer cores, allowing the use of a low power, single-ended LO source. It allows direct modulation of an RF signal using differential baseband I and Q signals. It supports GSM, EDGE, CDMA, CDMA2000, W-CDMA, 64-QAM, OFDM and other modulation formats.

The I/Q baseband inputs consist of voltage-tocurrent converters that in turn drive doublebalanced mixers. The outputs of these mixers are summed and applied to an on-chip RF transformer, which converts the differential
mixer signals to a 50Ω single-ended output. The four balanced I and Q base-band input ports are intended for DC coupling from a source with a common-mode voltage level of about 0.5 V . The differential input impedance of the baseband inputs is approximately 100Ω, making them ideally suited for current-drive applications.
The LO path consists of an LO buffer with single-ended input, and precision quadrature generators which produce the LO drive for the mixers.

Demonstration circuit 966 is designed for an RF output frequency range from 700 MHz to 1.05 GHz .

Design files for this circuit board are available. Call the LTC factory.

LT is a registered trademark of Linear Technology Corporation.

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 966 HIGH LINEARITY DIRECT QUADRATURE MODULATOR

Table 1. Typical Performance Summary $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITION ($\mathrm{f}_{\mathrm{BB}}=2 \mathrm{MHz}, \mathrm{f}_{\text {LO }}=850 \mathrm{MHz}$)	VALUE
Supply Voltage		4.5 V to 5.25 V
Supply Current	$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{EN}=$ High	113 mA
Maximum Shutdown Current	$V_{C C}=5 \mathrm{~V}, \mathrm{EN}=$ Low	$230 \mu \mathrm{~A}$
RF Frequency Range		700 to 1050 MHz
Baseband Frequency Range		DC to 380 MHz
LO Input Return Loss	$\mathrm{Z}_{0}=50 \Omega, \mathrm{P}_{\text {LO }}=0 \mathrm{dBm}$	13 dB
RF Output Return Loss	$\mathrm{Z}_{0}=50 \Omega$	30 dB
LO Input Power		-10 to +5 dBm
LO Frequency Range		700 to 1050 MHz
Conversion Gain	$\mathrm{P}_{\mathrm{RF}}=-10 \mathrm{dBm}$, $\mathrm{P}_{\mathrm{LO}}=0 \mathrm{dBm}$, defined as $\mathrm{P}_{\mathrm{RF}} / \mathrm{P}_{\mathrm{BB}}$	-6.8 dB
Output $3^{\text {rd }}$ Order Intercept	2-Tone, $\mathrm{P}_{\mathrm{RF}}=-10 \mathrm{dBm} /$ Tone, $\Delta \mathrm{f}=100 \mathrm{KHz}, \mathrm{P}_{\mathrm{Lo}}=0 \mathrm{dBm}$	+22.9 dBm
Output 2 ${ }^{\text {nd }}$ Order Intercept	2-Tone, $\mathrm{P}_{\text {RF }}=-10 \mathrm{dBm} /$ Tone, $\Delta \mathrm{f}=100 \mathrm{KHz}, \mathrm{P}_{\text {Lo }}=0 \mathrm{dBm}$	+63 dBm
Output 1dB Compression	$\mathrm{P}_{\text {Lo }}=0 \mathrm{dBm}$	+8.3 dBm
LO leakage	$\mathrm{P}_{\text {Lo }}=0 \mathrm{dBm}$	$-43 \mathrm{dBm}$
Image Rejection	$\mathrm{P}_{\text {Lo }}=0 \mathrm{dBm}$	-46 dBc

APPLICATION NOTE

RF FREQUENCY RANGE

No tuning is required for operation over the RF frequency range of 700 MHz to 1.05 GHz .

BASEBAND FREQUENCY RANGE

The baseband frequency range extends from DC to 3800 MHz (3dB bandwidth).

LO TO RF LEAKAGE

The $\mathrm{LT}^{\oplus} 5568$ offers excellent LO to RF leakage performance, typically -43 dBm .

TEST EQUIPMENT AND SETUP

Refer to Figure 1 for proper measurement equipment setup. Before performing measurements on the DUT, it is very important to evaluate the test system performance to ensure that: 1) distortion-free input signals are applied and 2) the spectrum analyzer internal distortion is minimized. Follow the guidelines below to do this.
Use high performance signal generators with low harmonic output ($>75 \mathrm{dBc}$) for 2-tone measurements. The signal generators must provide 2 equal amplitude outputs in quadrature with one another. High quality combiners that provide broadband 50 ohm termination on all ports should be used. The combiners should have good port-to-port isolation ($>30 \mathrm{~dB}$) to prevent the signal generators from modulating each other and generating intermodulation products. Attenuators on the outputs of these generators can also be used to increase the effective port-to-port isolation.

The LO leakage may be further reduced by the introduction of small differential DC offsets $\left(\mathrm{V}_{\mathrm{BBIP}}-\mathrm{V}_{\mathrm{BBI}}, \mathrm{V}_{\mathrm{BBQP}}-\mathrm{V}_{\mathrm{BBQM}}\right)$ at the baseband inputs, typically less than 10 mV . These DC offsets may be introduced, for example, using the DC offset points shown in figure 1.

SIDETONE TO RF LEAKAGE

The $\mathrm{LT}{ }^{\oplus} 5568$ also offers very good image rejection (sidetone suppression) at the RF port. The image rejection may be further enhanced by the introduction of small differential phase and amplitude offsets at the baseband inputs.

Spectrum analyzers can produce significant internal distortion products if they are overdriven. Sufficient spectrum analyzer input attenuation should be used to avoid saturating the instrument. A typical input $3^{\text {rd }}$ order intercept point for a spectrum analyzer is +40 dBm , with 20 dB input attenuation applied. This is more than 10 dB above the intercept point of the DUT, and should yield accurate $3^{\text {rd }}$ order distortion results.

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 966
 HIGH LINEARITY DIRECT QUADRATURE MODULATOR

QUICK START PROCEDURE

Demonstration circuit 966 is easy to set up to evaluate the performance of the $L T^{\circledR} 5568$. Refer to Figure 1 for proper measurement equipment setup.
Follow the procedure below:

1. Connect all test equipment as shown in Figure 1.
2. Set the DC power supply's current limit to 150 mA , and adjust output voltage to 5 V .
3. Connect Vcc to the 5V DC supply, and then connect VCCEN to 5 V ; the modulator is enabled (on).
4. Set Signal Generator \#1 to provide a 850 MHz , OdBm, CW signal to the demo board LO input port.
5. Set the Signal Generators \#2 and \#3 to provide two -10 dBm CW signals to the combiner ports - one at 2 MHz , and the other at 2.1 MHz . For both generators, output B should lead output A by 90 degrees. These 2 signals must be in quadrature to drive the demo board properly. This is most conveniently accomplished by using signal generators with dual outputs with adjustable phase. An example is the HP3326A shown in Figure 1.
6. To measure $3^{\text {rd }}$ order distortion and conversion gain, set the Spectrum Analyzer start and stop frequencies to 851.8 MHz and 852.3 MHz , respectively. Sufficient spectrum analyzer input attenuation should be used to avoid distortion in the instrument.
7. The $3^{\text {rd }}$ order intercept point is equal to $\left(P_{1}-\right.$ $\left.P_{3}\right) / 2+P_{1}$, where P_{1} is the average power level of the two fundamental output tones at 852 MHz and $852.1 \mathrm{MHz} ; \mathrm{P}_{3}$ is the average power level of the two $3^{\text {rd }}$ order products at
851.9 MHz and 852.2 MHz . All units are in dBm .
8. To measure $2^{\text {nd }}$ order distortion, set the Spectrum Analyzer start and stop frequencies to 854 MHz and 856 MHz , respectively. Sufficient spectrum analyzer input attenuation should be used to avoid distortion in the instrument.
9. The $2^{\text {nd }}$ order intercept point is equal to $2^{*} \mathrm{P}_{1}-$ P_{2}, where P_{1} is the power level of the fundamental output tone at $852 \mathrm{MHz}, \mathrm{P}_{2}$ is the $2^{\text {nd }}$ order product at 854.1 MHz . All units are in dBm .

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 966 HIGH LINEARITY DIRECT QUADRATURE MODULATOR

Figure 1. Proper Measurement Equipment Setup

Dual Output HP3326A (or equivalent)

Dual Output HP3326A (or equivalent)

5

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT 966 HIGH LINEARITY DIRECT QUADRATURE MODULATOR

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Sub-GHz Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-ADF7021DBJZ EVAL-ADF7021-NDBZ2 EVAL-ADF7021-VDB3Z EVAL-ADF7023DB3Z MICRF219A-433 EV MICRF220-433 EV AD6679-500EBZ EVAL-ADF7901EBZ EVAL-ADF790XEBZ 110976-HMC453QS16G STEVAL-IKR002V7D MAX2602EVKIT+ MAX1472EVKIT-315 MAX1479EVKIT-315 STEVAL-IKR002V3D MAX7042EVKIT-315+ MAX2902EVKIT\# MAX9947EVKIT+ MAX1470EVKIT-315 SKY66188-11-EK1 SKY66013-11-EVB EVAL-ADF7023DB5Z DRF1200/CLASS-E 109610971098 MDEV-900PRO DVK-SFUS-1-GEVK DVK-SFUS-API-1-GEVK US-SIGFOX-GEVB STEVAL-IKR002V2D 107755-HMC454ST89 DM182017-2 110961-HMC453ST89 DM182017-1 3179 DC689A DC1513B-AB $322932303231 \underline{3232}$ DC1250A-AA DC1513B-AC DC1513B-AD DC1513B-AA TEL0075 131903-HMC921LP4E EU-SIGFOX-GEVB 856512-EVB

