QUICK START GUIDE FOR DEMONSTRATION CIRCUIT DC991A

DESCRIPTION

Demonstration circuit DC991A is optimized for a down-converting mixer tests \& measurements for input frequency range of 700 MHz to 1680 MHz , an output frequency range of 110 MHz to 170 MHz (12 dB return loss BW). The LO port frequency range is 515 to 915 MHz (10 dB return loss BW).

The $\mathrm{LT}^{\circledR} 5560$ is a high performance broadband Up/Down-converting active mixer. This doublebalanced mixer can be driven by a single-ended LO source and requires -2 dBm of LO power. The signal ports can be impedance matched to a broad range of frequencies, which allow the $\mathrm{LT}^{\circledR} 5560$ to be used as
an up- or down-conversion mixer in a wide variety of applications.

The $\mathrm{LT}{ }^{\circledR} 5560$ is characterized with a supply current of 10 mA ; however, the DC current is adjustable, which allows the performance to be optimized for each application by changing the value of resistor R1. For $\mathrm{ICC}=10 \mathrm{~mA}$ the value of $\mathrm{R} 1=3-\mathrm{ohm}$. Operation at a lower supply current will, however, degrade linearity.

Design files for this circuit board are available. Call the LTC factory.

LT is a registered trademark of Linear Technology Corporation.

Table 1. Typical Performance Summary ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	CONDITION ($\mathrm{f}_{\text {MPUT }}=900 \mathrm{MHz}, \mathrm{f}_{10}=760 \mathrm{MHz}$)	VALUE
Supply Voltage		2.7V to 5.3V
Supply Current	$V_{C C}=3 V, E N=$ High, $\mathrm{R} 1=3$	10 mA
Maximum Shutdown Current	$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}, \mathrm{EN}=0.3 \mathrm{~V}$	$10 \mu \mathrm{~A}$
Signal Input Frequency Range	Requires External Matching	< 4000 MHz
LO Signal Frequency Range	Requires External Matching	< 4000 MHz
Signal Output Frequency Range	Requires External Matching	< 4000 MHz
IF Input Return Loss	$Z_{0}=50$, with External Matching	15dB
LO Input Return Loss	$Z_{0}=50$, with External Matching	15dB
RF Output Return Loss	$Z_{0}=50$, with External Matching	15dB
LO Input Power		-6dBm to 1dBm
Conversion Gain	$P_{\text {INPUT }}=-20 \mathrm{dBm}, \mathrm{P}_{\text {Lo }}=-2 \mathrm{dBm}$	2.6 dB
SSB Noise Figure	$\mathrm{P}_{\mathrm{LO}}=-2 \mathrm{dBm}$	10.1 dB
Input 3 ${ }^{\text {rd }}$ Order Intercept	2-Tone, -20dBm/Tone, $\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\mathrm{Lo}}=-2 \mathrm{dBm}$	+9.7dBm
Input ${ }^{\text {nd }}$ Order Intercept	2-Tone, $-20 \mathrm{dBm} /$ Tone, $\Delta \mathrm{f}=1 \mathrm{MHz}, \mathrm{P}_{\mathrm{Lo}}=-2 \mathrm{dBm}$	+47dBm
Input 1dB Compression	$\mathrm{P}_{\mathrm{LO}}=-2 \mathrm{dBm}$	0dBm
LO to IN leakage	$\mathrm{P}_{\mathrm{LO}}=-2 \mathrm{dBm}$	-57dBm
LO to OUT leakage	$\mathrm{P}_{\mathrm{LO}}=-2 \mathrm{dBm}$	-63dBm

PUICK START PROCEDURE

Demonstration circuit DC991A is easy to set up to evaluate the performance of the $\mathrm{LT}^{\circledR} 5560$. Refer to Figure 1 for proper measurement equipment setup and follow the procedure below:
NOTE:
a. Use high performance signal generators with low harmonic output for $2^{\text {nd }} \& 3^{\text {rd }}$ order distortion measurements. Otherwise, low-pass filters at the signal generator outputs should be used to suppress harmonics, particularly the $2^{\text {nd }}$ harmonic.
b. High quality combiners that provide a 50 Ohm termination on all ports and have good port-toport isolation should be used. Attenuators on the outputs of the signal generators are recommended to further improve source isolation and to reduce reflection into the sources.

1. Connect all test equipment as shown in Figure 1.
2. Set the DC power supply's current limit to 15 mA , and adjust output voltage to 3 V .
3. Connect Vcc to the $3 V$ DC supply, and then connect EN to 3 V ; the Mixer is enabled (on).
4. Set Signal Generator \#1 to provide a 760 MHz , -2 dBm , CW signal to the demo board LO input port.
5. Set the Signal Generators \#2 and \#3 to provide two -20dBm CW signals to the demo board RF
input port-one at 900 MHz , and the other at 901MHz.
6. To measure $3^{\text {rd }}$ order distortion and conversion gain, set the Spectrum Analyzer start and stop frequencies to 138 MHz and 143 MHz , respectively. Sufficient spectrum analyzer input attenuation should be used to avoid distortion in the instrument.
7. The $3^{\text {rd }}$ order intercept point is equal to $\left(P_{1}-P_{3}\right)$ / $2+P_{i n}$, where P_{1} is the power level of the two fundamental output tones at 140 MHz and $141 \mathrm{MHz}, P_{3}$ is the $3^{\text {rd }}$ order product at 139 MHz and 142 MHz , and $P_{\text {in }}$ is the input power (in this case, -20 dBm). All units are in dBm.
8. Using the same signal generators settings, output IM2 product can be measured at 1 MHz , which is a difference between two input frequencies (900 and 901 MHz). However we recommend increasing the frequency of the second signal generator from 901 MHz to 1045 MHz and measure OIM2 product at 145MHz frequency (1045MHz$900 \mathrm{MHz}=145 \mathrm{MHz}$). At 145 MHz the mixer output matching circuit has good return loss. To measure input $2^{\text {nd }}$ order distortion, set the Spectrum Analyzer center frequency to 145 MHz .
9. The $2^{\text {nd }}$ order intercept point is equal to $P_{1}-P_{2}+$ $P_{\text {in }}$, where P_{1} is the power level of the fundamental output tone at $140 \mathrm{MHz}, P_{2}$ is the $2^{\text {nd }}$ order product at 145 MHz , and $P_{\text {in }}$ is the input power (in this case -20dBm).

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT DC991A LOW POWER ACTIVE DOWN-CONVERTING MIXER

Figure 1. Proper Measurement Equipment Setup

QUICK START GUIDE FOR DEMONSTRATION CIRCUIT DC991A LOW POWER ACTIVE DOWN-CONVERTING MIXER

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB

