DEMO MANUAL DC996

LTC2208/LTC2208-14/LTC2217/ LTC2216/LTC2215 16-Bit/14-Bit 80Msps tol30Msps ADCs

DESCRIPTIOn

Demonstration circuit 996 supports a family of 16-14-bit 80Msps to 130Msps ADCs. Each assembly features one of the following devices: LTC ${ }^{2208, ~ L T C 2208-14, ~ L T C 2217, ~}$ LTC2216, LTC2215 high speed, high dynamic range ADCs.
This demonstration circuit only supports LVDS operation. For demonstration of CMOS output signaling, please see DC854.

Other members of this family include the LTC2207, a 105Msps 16-bit CMOS-only version of this device, as well as lower speed versions and single-ended clock versions. These $7 \mathrm{~mm} \times 7 \mathrm{~mm}$ QFN devices are supported by Demonstration Circuits 918 and 919 (for single-ended clock input).

Several versions of the 996 demo board supporting the LTC2208 16-bit, LTC2217 16-bit and LTC2208-14 14-bit series of A/D converters are listed in Table 1. Depending on the required resolution, sample rate and input frequency, the DC996 is supplied with the appropriate ADC and with an optimized inputcircuit. The circuitry on the analog inputs is optimized for analog input frequencies below 70 MHz or from 70 MHz to 140 MHz . For higher input frequencies, contact the factory for support.
Design files for this circuit board are available at http://www.linear.com/demo
$\boldsymbol{\Sigma T}$, LT, LTC, LTM, Linear Technology and the Linear logo are registered trademarks and PScope is a trademark of Linear Technology Corporation. All other trademarks are the property of their respective owners.

Table 1. DC996 Variants

DC996 VARIANTS	ADC PART NUMBER	RESOLUTION	MAXIMUM SAMPLE RATE	INPUT FREQUENCY
$996 \mathrm{~B}-\mathrm{A}$	LTC2208	$16-\mathrm{Bit}$	130 Msps	1 MHz to 70 MHz
$996 \mathrm{~B}-\mathrm{B}$	LTC2208	$16-\mathrm{Bit}$	130 Msps	70 MHz to 140 MHz
$996 \mathrm{~B}-\mathrm{C}$	LTC2208-14	14 -Bit	130 Msps	1 MHz to 70 MHz
$996 \mathrm{~B}-\mathrm{D}$	LTC2208-14	$14-\mathrm{Bit}$	130 Msps	70 MHz to 140 MHz
$996 \mathrm{~B}-\mathrm{E}$	LTC2217	$16-\mathrm{Bit}$	105 Msps	1 MHz to 70 MHz
$996 \mathrm{~B}-\mathrm{F}$	LTC2217	$16-\mathrm{Bit}$	105 Msps	70 MHz to 140 MHz
$996 \mathrm{~B}-\mathrm{G}$	LTC2216	$16-\mathrm{Bit}$	80 Msps	1 MHz to 70 MHz
$996 \mathrm{~B}-\mathrm{H}$	LTC2216	$16-\mathrm{Bit}$	80 Msps	70 MHz to 140 MHz
$996 \mathrm{~B}-\mathrm{I}$	LTC2215	$16-\mathrm{Bit}$	65 Msps	1 MHz to 70 MHz
$996 \mathrm{~B}-\mathrm{J}$	LTC2215	$16-\mathrm{Bit}$	65 Msps	70 MHz to 140 MHz
$996 \mathrm{~A}-\mathrm{P}$	LTC2208	$16-\mathrm{Bit}$	130 Msps	$>140 \mathrm{MHz}$
$996 \mathrm{~A}-Q$	LTC2208-14	$14-\mathrm{Bit}$	130 Msps	$>140 \mathrm{MHz}$

DEMO MANUAL DC996

PERFORMARCE SUMMARY ($\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

PARAMETER	CONDITION	VALUE
Supply Voltage	Depending On Sampling Rate and the A/D Converter Provided, This Supply Must Provide Up To 700mA.	Optimized for 3.3V $[3.15 \mathrm{~V} \Leftrightarrow 3.45 \mathrm{~V}$ Min/Max]
Analog Input Range	Depending on PGA Pin Voltage	1.5 V P-p to $2.25 \mathrm{~V}_{\text {P-p }}$
Logic Input Voltages	Minimum Logic High Maximum Logic Low	2 V 0.8 V
Logic Output Voltages (Differential)	Nominal Logic Levels (100 Load) Minimum Logic levels (100 Load)	$350 \mathrm{mV} / 2.1 \mathrm{~V}$ Common Mode $247 \mathrm{mV} / 2.1 \mathrm{~V}$ Common Mode
Sampling Frequency (Convert Clock Frequency)	See Table 1	
Convert Clock Level	50Ω Source Impedance, AC-Coupled or Ground Referenced (Convert Clock Input Is Capacitor Coupled On Board and Terminated with 50 .)	$2 \mathrm{~V}_{\text {P-p } \Leftrightarrow 2.5 \mathrm{~V} \text { P-p Sine Wave or }}^{\text {Square wave }}$
Resolution	See Table 1	
Input frequency range	See Table 1	
SFDR	See Applicable Data Sheet	
SNR	See Applicable Data Sheet	

PUICK START PROCEDURE

Demonstration circuit 996 is easy to set up to evaluate the performance of the LTC2208/LTC2208-14/LTC2217 A/D converters. Refer to Figure 1 for proper measurement equipment setup and follow this procedure:

Setup

If a DC890 QuikEval ${ }^{\text {TM }}$ II Data Acquisition and Collection System was supplied with the DC996 demonstration circuit, follow the DC890 Quick Start Guide to install the required software and for connecting the DC890 to the DC996 and to a PC.

DC996 Demonstration Circuit Board Jumpers

The DC996 demonstration circuit board should have the following jumper settings as default: (as per Figure 1).
Figure 1 shows DC996A, the DC996B is shown in Figure 7.
J2: Mode (V_{CC}) 2's Complement CDS Off
J3: SHDN: (Run) Dither (Off)
J4: Rand (Off) PGA 1x
J9: Unused power connector

Applying Power and Signals to the DC996 Demonstration Circuit

Apply 3.3V across the pins marked " +3.3 V " and "PWR GND" on the DC996. The DC996 demonstration circuit requires up to 700 mA depending on the sampling rate and the A/D converter supplied. If a DC890 is used to acquire data from the DC996, the DC890 must be provided with an external $6 \mathrm{~V} \pm 0.5 \mathrm{~V} 1 \mathrm{~A}$ supply on turrets $\mathrm{G7}(+)$ and G1(-) or the adjacent 2.1 mm power jack to support the power requirements of the Xilinx Spartan 3 FPGA active terminations used to terminate the LVDS repeaters on the DC996. The DC890 will not activate the LVDS mode unless the DC890 detects external power present.
If external power is not present the DC890 will not configure the FPGA for LVDS terminations as this would result in exceeding the USB 500mA limit. The DC890 contains an onboard electronic circuit breaker which will shut off the DC890 if external power is removed while the FPGA is configured for LVDS active terminations.

PUICK START PROCEDURE

Figure 1. DC996A Setup (Zoom for Detail). See Figure 7 for DC996B

Encode Clock

Note: This is not a logic-compatible input. It is terminated with 50Ω. Apply an encode clock to the SMA connector on the DC996 demonstration circuit board marked "J7 ENCODE INPUT". This is a transformer-coupled input, terminated on the secondary side in two steps, 100Ω at the transformer with final termination at the ADC at 100Ω.
For the best noise performance, the ENCODE INPUT must be driven with a very low jitter source. When using a sinusoidal generator, the amplitude should often be as large as possible, up to $3 V_{\text {p-p }}$ or 13 dBm . Using bandpass filters on the clock and the analog input will improve the
noise performance by reducing the wideband noise power of the signals. Data sheet FFT plots are taken with 10 -pole LC filters made by TE (Los Angeles, CA) to suppress signal generator harmonics, non-harmonically related spurs and broad band noise. Low phase noise Agilent 8644B generators are used with TE bandpass filters for both the clock input and the analog input.
Apply the analog input signal of interest to the SMA connectors on the DC996 demonstration circuit board marked "J5 ANALOG INPUT". These inputs are capacitive coupled to Balun transformers ETC1-1-13, or directly coupled through flux-coupled transformers ETC1-1T.

DEMO MANUAL DC996

DUICK START PROCEDURE

An internally generated conversion clock output is available on J 1 which could be collected via a logic analyzer, or other data collection system if populated with a SAMTEC MEC8-150 type connector or collected by the DC890 Data Acquisition Board using the PScope ${ }^{\text {TM }}$ System Software provided or downloaded from the Linear Technology website at http://www.linear.com/designtools/software/. If a DC890 was provided, follow the DC890 Quick Start Guide and the instructions below.

To start the data collection software if "PScope.exe", is installed (by default) in\Program Files\LTC\PScope
, double click the PScope Icon or bring up the run window under the start menu and browse to the PScope directory and select PScope.

Ifthe DC996 demonstration circuit is properly connected to the DC890, PScope should automatically detect the DC996, and configure itself accordingly. If necessary the procedure below explains how to manually configure PScope.
Under the Configure menu, go to ADC Configuration. Check the Config Manually box and use the following configuration options:

- 16-Bit (or 14-Bit if using LTC2208-14)
- Alignment: Left-16
- Bipolar (2's complement)
- Positive clock edge
- Type: LVDS

If everything is hooked up properly, powered and a suitable convert clock is present, clicking the "Collect" button should result in time and frequency plots displayed in the PScope window. Additional information and help for PScope is available in the DC890 Quick Start Guide and in the online help available within the PScope program itself.

Analog Input Network

For optimal distortion and noise performance the RC network on the analog inputs should be optimized for the analog input frequencies of interest. At this point in time, the circuit in Figure 3 for input frequencies below 70 MHz . For input frequencies from 70 MHz to 140 MHz , the circuit in Figure 2 is used. These two input networks cover a broad bandwidth and are not optimized for operation at a specific input frequency.

For higher frequencies, a single balun (ETC1-1-13) is populated on a DC996A board.
In almost all cases, filters will be required on both analog input and encode clock to provide data sheet SNR.

The filters should be located close to the inputs to avoid reflections from impedance discontinuities at the driven end of a long transmission line. Most filters do not present 50Ω outside the passband.

The DC996A board has provision for a bandpass filter prior to the balun. This may be populated if the board is customized for a given frequency band. (Figure 5)

In some cases, 3dB to 10dB pads may be required to obtain low distortion.

If your generator cannot deliver full-scale signals without distortion, you may benefit from a medium power amplifier based on a Gallium Arsenide Gain block prior to the final filter. This is particularly true at higher frequencies where operational amplifiers may be unable to deliver the combination of low noise figure and high IP3 point required. A high order filter can be used prior to this final amplifier, and a relatively lower Q filter used between the amplifier and the demo circuit.

For advice on drive circuits or for input frequencies greater than 220MHz, or for higher order bandpass filtering prior to the ADC, contact the factory for support.

PUICK START PROCEDURE

Figure 2. Analog Front-End Circuit For 70MHz+

Figure 3. Analog Front-End Circuit For 1MHz $<\mathrm{A}_{\text {IN }}<70 \mathrm{MHz}$
For input frequencies less than 5 MHz , or greater than 150 MHz , other input networks may be more appropriate. Please consult the factory for suggestions on drivers and networks if your signal sources extend outside these ranges, or if you experience difficulties driving these suggested networks.

As this board has a black solder mask, in order to improve the thermal performance, Figure 4 is a picture of the top side in colors that are easier to digest. The dielectric under the input network (bluish pads) is 20 mils, otherwise, dielectric thickness is 6 mils.

This board is used only for 200MHz+ applications. The input network of Figure 5 is devised to be populated with a bandpass filter.

Gerber or PDF files of this board are available.
If the higher frequency board is ordered without requesting a bandpass filter, C 6 is a counterpart to C 7 , providing a DC block, C23 is a 0Ω resistor.

If this is populated as a BP filter, The reactance of L1 and L 3 , and the series of C6 and C5 (and C21 and C23) should be between 50Ω and 33Ω. The reactance of L 2 should match that of $1 / 2 \mathrm{C} 6^{\wedge}+\mathrm{C} 5$.
The ratio of C 5 to C 6 will determine coupling be-tween the two resonators, with a high ratio giving a narrow pass band.
As an example, for center frequency of $260 \mathrm{MHz} ;-3 \mathrm{~dB}$ BW of $150 \mathrm{MHz}, \mathrm{C} 6, \mathrm{C} 23=27 \mathrm{pF} ; \mathrm{C} 5, \mathrm{C} 21=68 \mathrm{pF} ; \mathrm{L} 1, \mathrm{~L} 3$ $=18 \mathrm{nH} ; \mathrm{L} 2=7.5 \mathrm{nH}$.

This has a flat passband over 80MHz. See Figure 6.
This filter is not intended as a band-defining filter, but simply to minimize noise BW prior to the ADC, and to minimize 2nd and 3rd originating in a drive amplifier. 2nd harmonic of 260 is down at 1.

DEMO MANUAL DC996

QUICK START PROCEDURE

Figure 4. DC996A Artwork

Figure 5. Input Filter for DC996A Board

PUICK START PROCEDURG

Figure 6. Input Filter Frequency Response for DC996A Board

Figure 7. DC996B Board—Two Transformer Version

Figure 8. DC996B Artwork

DEMO MANUAL DC996

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
DC996A General BOM				
1	0	C4 (Option)	CAP~NPO~1.8pF~50V~0.25pF~0402	AVX, 04025A1R8CAT2A
2	1	C8	CAP~NPO~1.8pF~50V~0.25pF~0402	AVX, 04025A1R8CAT2A
3	1	C12	CAP X5R~0.01 FF~16V~10\% ~0402	AVX, 0402YC103KAT
4	15	C15-16, C20, C22, C25-32, C34-36	CAP $\sim 5 \mathrm{R} \sim 0.14 \mathrm{~F} \sim 10 \mathrm{~V} \sim 10 \% \sim 0402$	AVX, 0402ZD104KAT
5	0	C10, C11 (Option)		
6	6	C1-3, C6, C7, C23	CAP \sim X7R 0.01 $\mathrm{F} \sim 16 \mathrm{~V} \sim 10 \% \sim 0603$	AVX, 0603YC103KAT
7	2	C18, C19	CAP \sim XR $\sim 0.1 \mu \mathrm{~F} \sim 16 \mathrm{~V} \sim 10 \% \sim 0603$	AVX, 0603YC104KAT
8	0	C21 (Option)		
9	2	C13, C17	CAP \sim X5R~2.2 μ F~10V~20\% 0805	AVX, 0805ZD225MAT
10	3	C14, C24, C38	CAP \sim KR $\sim 4.7 \mu \mathrm{~F} \sim 10 \mathrm{~V} \sim 20 \% \sim 0805$	AVX, 0805ZD475MAT
11	0	C5 (Option)		
12	4	J2, J3, J4, J9	HEADER~3X2~2mm	COMM_CON/2202S-06G2
13	2	J5, J7	CONN~SMA 50, EDGE-LAUNCH	E.F. Johnson, 142-0701-851
14	0	L1 (Option)		
15	1	L2	RES 0 ${ }^{\text {_JUMPER~0603 }}$	AAC, CJ06-000M
16	0	L3 (Option)		
17	19	R13, R16-23, R30-35, R38-41	RES~100 $2 \sim 5 \% \sim 1 / 20 \sim 0201$	VISHAY, CRCW0201100RJNED
18	1	R15	RES~100 $\sim 1 \% \sim 1 / 16 \sim 0402$	VISHAY, CRCW0402100RFKED
19	1	R24	RES~100k~1\%~1/16~0402	VISHAY, CRCW0402100KFKED
20	2	R11-12	RES 33.2 $2 \sim 1 \% \sim 1 / 16 \sim 0402$	VISHAY, CRCW040233R2FKED
21	2	R1, R2	RES 49.9 \sim 1\% $1 / 16 \sim 0402$	VISHAY, CRCW040249R9FKEA
22	6	R4, R5, R9, R10, R27, R28	RES 4.99 $2 \sim 1 \% \sim 1 / 16 \mathrm{~W} \sim 0402$	VISHAY, CRCW04024R99FKED
23	3	R25, R26, R29	RES 4990 $2 \sim 1 \% \sim 1 / 16 \sim 0402$	VISHAY, CRCW04024K99FKED
24	0	R3 (Option)		
25	2	R14, R37	RES $100 \Omega \sim 1 \% \sim 1 / 16 \mathrm{~W} \sim 0603$	VISHAY, CRCW0603100RFKEA
26	3	R6-8	RES 1000 \sim 1\% $1 / 16 \mathrm{~W} \sim 0603$	VISHAY, CRCW06031K00FKEB
27	2	R42, R43	FERRITE BEAD~SMT~1206	MURATA, BLM31PG330SN1L
28	2	T1, T2	XFRM~RF~SMT~1:1 BALUN	MACOM, MABA-007159-000000
29	1	U1 (Bal to 1298A)	IC~SERIAL_EEPROM~TSSOP8	MICROCHIP, 24LCO25-I /ST
30	2	U3, U4	BUFFER~LVDS~0CTAL	FAIRCHILD, FIN1108MTDX
31	1	U5	BUFFER LVDSS SINGLE	FAIRCHILD, FIN1101K8X
32	4	TP1, TP2, TP4, TP5	TURRET	MILL MAX, 2308-02-00-80-00-00-07-00
33	4	Z (STAND-OFF)	STAND-OFF, NYLON 0.25'" tall	KEYSTONE, 8831(SNAP ON)
34	5		SHUNT, 0.079" Center	SAMTEC, 2SN-BK-G
35	2		STENCIL, 20X20	STENCIL 996A, 20X20
DC996A-P				
1	1	U2 (DC996A-P)	IC ADC~130Msps~16-BIT~QFN-64	LINEAR_TECH/LTC2208CUP\#PBF
2	1		FAB, PRINTED CIRCUIT BOARD	DEM0 CIRCUIT \#996A
DC996A-Q				
1	1	U2 (DC996A-Q)	IC ADC 130Msps $\sim 14-\mathrm{BIT}$ QFN-64	LINEAR_TECH/LTC2208CUP-14\#PBF
2	1		FAB, PRINTED CIRCUIT BOARD	DEM0 CIRCUIT \#996A

DEMO MANUAL DC996

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
DC996B General BOM				
1	5	C1-C3, C6-7	CAP \sim X7R $\sim 0.01 \mu \mathrm{~F} \sim 16 \mathrm{~V} \sim 10 \% \sim 0603$	AVX/0603YC103KAT
2	2	C13, C17	CAP \sim X 2 R 2.2 μ F~10V~20\% 0805	AVX/0805ZD225MAT
3	3	C14, C24, C38	CAP \sim XR $\sim 4.7 \mu \mathrm{~F} \sim 10 \mathrm{~V} \sim 20 \% \sim 0805$	AVX/0805ZD475MAT
4	15	C15-16, C20, C22, C25-C32, C34-C36	CAP \sim XR $\sim 0.1 \mu \mathrm{~F} \sim 10 \mathrm{~V} \sim 10 \% \sim 0402$	AVX/0402ZD104KAT
5	0	C18, C19(Option)	CAP \sim X7R $\sim 0.1 \mu \mathrm{~F} \sim 16 \mathrm{~V} \sim 10 \% \sim 0603$	AVX/0603YC104KAT
6	1	C4 (Also C9-C10 options)	CAP~NP0~8.2pF~50V~0.25pF~0402	AVX/04025A8R2CAT2A
7	2	C5, C12	CAP \sim KR $\sim 0.01 \mu \mathrm{~F} \sim 16 \mathrm{~V} \sim 10 \% \sim 0402$	AVX/0402YC103KAT
8	3	J2-4	HEADER $\sim 3 \times 2 \sim 2 \mathrm{~mm}$	COMM_CON/2202S-06G2
9	0	J9 (Option)	HEADER $\sim 3 \times 2 \sim 2 \mathrm{~mm}$	COMM_CON/2202S-06G2
10	2	J5, J7	CONN~SMA 50Ω EDGE-LAUNCH	AMPHENOL_CONNEX/132357
11	2	R42-R43	FERRITE BEAD SMT~1206	MURATA/BLM31PG330SN1L
12	2	R9-R10	RES~10』~1\% 1/16~0402	AAC/CR05-10R0FM
13	1	R15	RES $100 \Omega \sim 1 \% \sim 1 / 16 \sim 0402$	AAC/CR05-1000FM
14	1	R37	RES 100 \sim 1\% 1/16W~0603	AAC/CR16-1000FM
15	19	R13, R16-R23, R30-R35, R38-R41	RES $100 \Omega \sim 5 \% \sim 1 / 20 \sim 0201$	ACC/CR20-101JM
16	3	R6-8, R14	RES 1 1 ~ 1\%~1/16W~0603	AAC/CR16-1001FM
17	1	R24	RES~100k~1\% 1/16~0402	AAC/CR05-1003FM
18	2	R1-R2	RES 49.9 ${ }^{\text {a }} 1 \% \sim 1 / 16 \sim 0402$	AAC/CR05-49R9FM
19	0	R3 (OPTION)	RES 100 $\sim \sim 1 \% \sim 1 / 16 \mathrm{~W} \sim 0603$	AAC/CR16-1000FM
20	2	R11-R12	RES~33.2 $2 \sim 1 \% \sim 1 / 16 \sim 0402$	AAC/CR05-33R2FM
21	3	R25, R26, R29	RES 4990 $\sim \sim 1 \% \sim 1 / 16 \sim 0402$	AAC/CR05-4991FM
22	2	R27-R28	RES 10 $2 \sim 5 \% \sim 1 / 20 \sim 0201$	PANASONIC, ERJ-1GEJ100C
23	2	R4-R5	RES $5.1 \Omega \sim 1 \% \sim 1 / 16 \sim 0402$	AAC/CR05-5R1FM
24	1	T3	XFRM~RF~SMT~1:1 BALUN	M/A-COM, ETC1-1-13 (Leaded) M/A-COM, MABA-007159-000000 (PbF)
25	4	TP1-2, TP4-5	TURRET	MILL_MAX/2308-2
26	1	U1	IC~Serial_EEPROM~TSSOP8	MICROCHIP/24LCO25-I /ST
27	2	U3, U4	BUFFER~LVDS~OCTAL	FAIRCHILD/FIN1108MTD
28	1	U5	BUFFER~LVDS~SINGLE	FAIRCHILD/FIN1101K8X
29	4	Z (STAND-OFF)	STAND-OFF, NYLON 0.25" tall	KEYSTONE, 8831(SNAP ON)
30	5		SHUNT, 0.079" Center	SAMTEC, 2SN-BK-G
31	2		STENCIL, 20×20	STENCIL 996B, 20X20
DC996B-A				
1	1	C8	CAP~NPO~4.7pF~50V~0.25pF~0402	AVX/04025A4R7CAT2A
2	2	C9-C10	CAVP~NPO~8.2pF~50V~0.25pF~0402	AVX/04025A8R2CAT2A
3	1	L1	IND~56nH~5\% 0603	MURATA/LQP18MN56NG02D
4	2	R36, R44	RES~86.6~1\% 1/16W~0603	AAC/CR16-86R6FM
5	1	R45	RES 86.6~1\% 1/16~0402	AAC/CR05-86R6FM
6	1	T1	BALUN~RF~SMT~1:1	M/A-COM, ETC1-1-13 (Leaded) M/A-COM, MABA-007159-000000 (PbF)
7	1	T2	XFRM~RF~SMT~1:1CT	M/A-COM, ETC1-1T (Leaded) M/A-COM, MABAES0060 (PbF)
8	1	U2 (D/C 0619)	ADC~16BIT~130MSPS (Lot\# T23920.2)	LINEAR/LTC2208IUP\#PBF
9	1		FAB, PRINTED CIRCUIT BOARD	DEMO CIRCUIT 996B-A

DEMO MANUAL DC996

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
DC996B-B				
1	1	C8	CAP~NPO~1.8pF~50V~0.25pF~0402	AVX/04025A1R8CAT2A
2	2	C9-C10	CAP~NPO~3.9pF~50V~0.25pF~0402	AVX/04025A3R9CAT2A
3	1	L1	IND~18nH~5\% ~0603	MURATA/LQP18MN18NG02D
4	2	R36, R44	RES $43.2 \Omega \sim 1 \% \sim 1 / 16 \mathrm{~W} \sim 0603$	AAC/CR16-43R2FM
5	1	R45	RES~182 2 _JUMPER~0402	AAC/CR05-1820FM
6	1	T1	BALUN~RF~SMT~1:1	M/A-COM, ETC1-1-13 (Leaded) M/A-COM, MABA-007159-000000 (PbF)
7	1	T2	TRANSFORMER, WBC1-1L	COILCRAFT, WBC1-1L
8	1	U2 D/C 0619	ADC 16-BIT~130Msps, Lot\# T23920.2	LINEAR/LTC2208IUP\#PBF
9	1		FAB, PRINTED CIRCUIT BOARD	DEMO CIRCUIT \#996B-B
DC996B-C				

1	1	C8	CAP~NPO~4.7pF~50V~0.25pF~0402	AVX/04025A4R7CAT2A
2	2	C9-C10	CAP~NPO~8.2pF~50V~0.25pF~0402	AVX/04025A8R2CAT2A
3	1	L1	IND 56nH~5\% ~0603	MURATA/LQP18MN56NG02D
4	2	R36, R44	RES $\sim 86.6 \Omega \sim 1 \% \sim 1 / 16 W \sim 0603$	AAC/CR16-86R6FM
5	1	R45	RES~86.6 $\sim \sim 1 \% \sim 1 / 16 \sim 0402$	AAC/CR05-86R6FM
6	1	T1	BALUN \sim RF~SMT~1:1	M/A-COM, ETC1-1-13 (Leaded) M/A-COM, MABA-007159-000000 (PbF)
7	1	T2	XFRM~RF~SMT~1:1CT	M/A-COM, ETC1-1T (Leaded) M/A-COMM, MABAES0060 (PbF)
8	1	U2 (Lot \#T23307.1)	ADC~14BIT~130MSPS (D/C 0604)	LINEAR/LTC2208IUP-14\#PBF
9	1		FAB, PRINTED CIRCUIT BOARD	DEMO CIRCUIT \#996B-C

DC996B-D

1	1	C8	CAP~NPO~1.8pF~50V~0.25pF~0402	AVX/04025A1R8CAT2A
2	2	C9-C10	CAP~NPO~3.9pF~50V~0.25pF~0402	AVX/04025A3R9CAT2A
3	1	L1	IND~18nH~5\% 0603	MURATA/LQP18MN18NG02D
4	2	R36, R44	RES $43.2 \Omega \sim 1 \% \sim 1 / 16 \mathrm{~W} \sim 0603$	AAC/CR16-43R2FM
5	1	R45	RES 182Ω _JUMPER~0402	AAC/CR05-1820FM
6	1	T1	BALUN~RF~SMT~1:1	$\begin{aligned} & \text { M/A-COM, ETC1-1-13 (Leaded) } \\ & \text { M/A-COM, MABA-007159-000000 (PbF) } \end{aligned}$
7	1	T2	TRANSFORMER, WBC1-1L	Coilcraft, WBC1-1L
8	1	U2 (Lot \#T23307.1)	ADC~14-BIT~130Msps (D/C 0604)	LINEAR/LTC2208IUP-14\#PBF
9	1		FAB, PRINTED CIRCUIT BOARD	DEMO CIRCUIT \#996B-D
DC966B-E				
1	1	C8	CAP~NPO~4.7pF~50V~0.25pF 0402	AVX, 04025A4R7CAT2A
2	2	C9-10	CAP~NPO~8.2pF~50V~0.25pF 0402	AVX, 04025A8R2CAT2A
3	1	L1	IND 56nH $\sim 5 \% 0603$	MURATA, LQP18MN56NG02D
4	2	R36, R44	RES 86.6 $2 \sim 1 \% \sim 1 / 16 \mathrm{~W} 0603$	VISHAY, CRCW060386R6FKEA
5	1	R45	RES 86.6 $2 \sim 1 \% \sim 1 / 160402$	VISHAY, CRCW040286R6FKED
6	1	T1	BALUN~RF~SMT~1:1	M/A-COM, MABA-007159-000000 (PbF)
7	1	T2	XFRM~RF~SMT~1:1CT	M/A-COM, MABAES0060 (PbF)
8	1	U2	ADC~16-BIT~105Msps	LINEAR, LTC2217IUP\#PBF
9	1		FAB, PRINTED CIRCUIT BOARD	DEMO CIRCUIT 996B

DEMO MANUAL DC996

PARTS LIST

ITEM	QTY	REFERENCE	PART DESCRIPTION	MANUFACTURER/PART NUMBER
DC966B-F				
1	1	C8	CAP~NPO~1.8pF~50V~0.25pF 0402	AVX, 04025A1R8CAT2A
2	2	C9-10	CAP~NPO~3.9pF~50V~0.25pF 0402	AVX, 04025A3R9CAT2A
3	1	L1	IND~18nH 5\% 0603	MURATA, LQP18MN18NG02D
4	2	R36, R44	RES 43.2 $2 \sim 1 \% \sim 1 / 16 \mathrm{~W} 0603$	VISHAY, CRCW060343R2FKEA
5	1	R45	RES 182Ω _JUMPER 0402	VISHAY, CRCW0402182RFKED
6	1	T1	BALUN~RF~SMT~1:1	M/A-COM, MABA-007159-000000 (PbF)
7	1	T2	TRANSFORMER, WBC1-1TL	Coilcraft, WBC1-1TLC
8	1	U2	ADC~16-BIT~105Msps,	LINEAR, LTC2217IUP\#PBF
9	1		FAB, PRINTED CIRCUIT BOARD	DEM0 CIRCUIT \#996B

DC966B-G

1	1	C8
2	2	C9-10
3	1	L1
4	2	R36, R44
5	1	R45
6	1	T1
7	1	T2
8	1	U2
9	1	

CAP~NPO~4.7pF~50V~0.25pF 0402	AVX, 04025A4R7CAT2A
CAP~NPO~8.2pF~50V~0.25pF 0402	AVX, 04025A8R2CAT2A
IND 56nH $5 \% 0603$	MURATA, LQP18MN56NG02D
RES 86.6 $2 \sim 1 \% \sim 1 / 16 \mathrm{~W} 0603$	VISHAY, CRCW060386R6FKEA
RES 86.6 $2 \sim 1 \% \sim 1 / 160402$	VISHAY, CRCW040286R6FKED
BALUN~RF~SMT~1:1	M/A-COM, MABA-007159-000000 (PbF)
XFRM~RF~SMT~1:1CT	M/A-COM, MABAES0060 (PbF)
ADC~16-BIT~80Msps	LINEAR, LTC2216IUP\#PBF
FAB, PRINTED CIRCUIT BOARD	DEMO CIRCUIT 996B

1	1	C8
2	2	C9-10
3	1	L1
4	2	R36, R44
5	1	R45
6	1	T1
7	1	T2
8	1	U2
9	1	

CAP~NPO~1.8pF~50V~0.25pF 0402	AVX, 04025A1R8CAT2A
CAP~NPO~3.9pF~50V~0.25pF 0402	AVX, 04025A3R9CAT2A
IND~18nH 5\% 0603	MURATA, LQP18MN18NG02D
RES $43.2 \Omega \sim 1 \% \sim 1 / 16 \mathrm{~W} 0603$	VISHAY, CRCW060343R2FKEA
RES~182,_JUMPER 0402	VISHAY, CRCW0402182RFKED
BALUN~RF~SMT~1:1	M/A-COM, MABA-007159-000000 (PbF)
TRANSFORMER, WBC1-1TL	Coilcraft, WBC1-1TLC
ADC~16-BIT~80Msps,	LINEAR, LTC2216IUP\#PBF
FAB, PRINTED CIRCUIT BOARD	DEMO CIRCUIT \#996B

DC966B-I

1	1	C8	CAP~NPO~4.7pF~50V~0.25pF 0402	AVX, 04025A4R7CAT2A
2	2	C9-10	CAP~NPO~8.2pF~50V~0.25pF 0402	AVX, 04025A8R2CAT2A
3	1	L1	IND 56nH $5 \% 0603$	MURATA, LQP18MN56NG02D
4	2	R36, R44	RES 86.6 $2 \sim 1 \% \sim 1 / 16 \mathrm{~W} 0603$	VISHAY, CRCW060386R6FKEA
6	1	T1 (Bal to 1098A-F)	BALUN~RF~SMT~1:1	M/A-COM, MABA-007159-000000 (PbF)
7	1	T2 (Bal to 1098A-C)	XFRM~RF~SMT~1:1CT	M/A-COM, MABAES0060 (PbF)
8	1	U2	ADC~16-BIT~65Msps	LINEAR, LTC2215IUP\#PBF
9	1		FAB, PRINTED CIRCUIT BOARD	DEM0 CIRCUIT 996B
DC966B-J				
1	1	C8	CAP~NPO~1.8pF~50V~0.25pF 0402	AVX, 04025A1R8CAT2A
2	2	C9-10	CAP~NPO~3.9pF~50V~0.25pF 0402	AVX, 04025A3R9CAT2A
3	1	L1	IND 18nH $5 \% 0603$	MURATA, LQP18MN18NG02D
4	2	R36, R44	RES 43.2 $2 \sim 1 \% \sim 1 / 16 \mathrm{~W} 0603$	VISHAY, CRCW060343R2FKEA
5	1	R45	RES 182Ω JUMPER 0402	VISHAY, CRCW0402182RFKED
6	1	T1	BALUN~RF~SMT~1:1	M/A-COM, MABA-007159-000000 (PbF)
7	1	T2	TRANSFORMER, WBC1-1TL	Coilcraft, WBC1-1TLC
8	1	U2	ADC~16-BIT~65Msps,	LINEAR/LTC2215IUP\#PBF
9	1		FAB, PRINTED CIRCUIT BOARD	DEMO CIRCUIT \#996B

DEMO MANUAL DC996

SCHEMATIC DIAGRAM

SCHEMATIC DIAGRAM

DEMO MANUAL DC996

DEMONSTRATION BOARD IMPORTANT NOTICE

Linear Technology Corporation (LTC) provides the enclosed product(s) under the following AS IS conditions:
This demonstration board (DEMO BOARD) kit being sold or provided by Linear Technology is intended for use for ENGINEERING DEVELOPMENT OR EVALUATION PURPOSES ONLY and is not provided by LTC for commercial use. As such, the DEMO BOARD herein may not be complete in terms of required design-, marketing-, and/or manufacturing-related protective considerations, including but not limited to product safety measures typically found in finished commercial goods. As a prototype, this product does not fall within the scope of the European Union directive on electromagnetic compatibility and therefore may or may not meet the technical requirements of the directive, or other regulations.
If this evaluation kit does not meet the specifications recited in the DEMO BOARD manual the kit may be returned within 30 days from the date of delivery for a full refund. THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY THE SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EXCEPT'TO THE EXTENT OF THIS INDEMNITY, NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES.

The user assumes all responsibility and liability for proper and safe handling of the goods. Further, the user releases LTC from all claims arising from the handling or use of the goods. Due to the open construction of the product, it is the user's responsibility to take any and all appropriate precautions with regard to electrostatic discharge. Also be aware that the products herein may not be regulatory compliant or agency certified (FCC, UL, CE, etc.).

No License is granted under any patent right or other intellectual property whatsoever. LTC assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or any other intellectual property rights of any kind.
LTC currently services a variety of customers for products around the world, and therefore this transaction is not exclusive.
Please read the DEMO BOARD manual prior to handling the product. Persons handling this product must have electronics training and observe good laboratory practice standards. Common sense is encouraged.

This notice contains important safety information about temperatures and voltages. For further safety concerns, please contact a LTC application engineer.

> Mailing Address:

Linear Technology
1630 McCarthy Blvd.
Milpitas, CA 95035

Copyright © 2004, Linear Technology Corporation

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for Data Conversion IC Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
EVAL-AD5063EBZ EVAL-AD5422LFEBZ EVAL-AD7265EDZ EVAL-AD7641EDZ EVAL-AD7674EDZ EVAL-AD7719EBZ EVAL-AD7767-1EDZ EVAL-AD7995EBZ AD9114-DPG2-EBZ AD9211-200EBZ AD9251-20EBZ AD9251-65EBZ AD9255-125EBZ AD9284250EBZ AD9613-170EBZ AD9627-125EBZ AD9629-20EBZ AD9709-EBZ AD9716-DPG2-EBZ AD9737A-EBZ AD9787-DPG2-EBZ AD9993-EBZ DAC8555EVM ADS5482EVM ADS8372EVM EVAL-AD5061EBZ EVAL-AD5062EBZ EVAL-AD5443-DBRDZ EVALAD5570SDZ EVAL-AD7450ASDZ EVAL-AD7677EDZ EVAL-AD7992EBZ EVAL-AD7994EBZ AD9119-MIX-EBZ AD9148-M5375EBZ AD9204-80EBZ AD9233-125EBZ AD9265-105EBZ AD9265-80EBZ AD9608-125EBZ AD9629-80EBZ AD9648-125EBZ AD964920EBZ AD9650-80EBZ AD9765-EBZ AD9767-EBZ ADS8322EVM LM96080EB/NOPB EVAL-AD5445SDZ EVAL-AD5660EBZ

