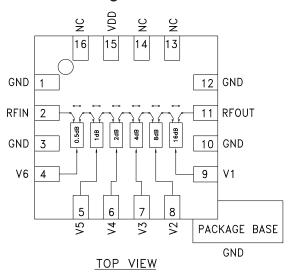


01.0017


0.5 dB LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 2.2 - 8.0 GHz

Typical Applications

The HMC425ALP3E is ideal for:

- WLAN & Point-to-Multi-Point
- Fiber Optics & Broadband Telecom
- Microwave Radio & VSAT
- Military

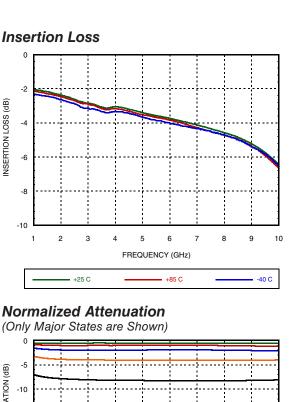
Functional Diagram

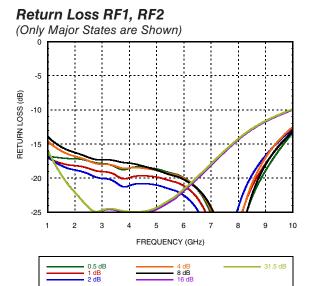
Features

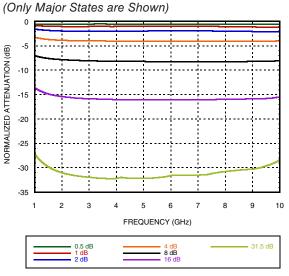
0.5 dB LSB Steps to 31.5 dB Single Control Line Per Bit ± 0.5 dB Typical Bit Error Single +5V Supply 3x3 mm SMT Package

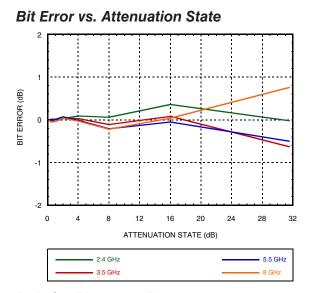
General Description

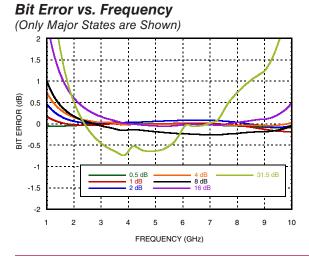
HMC425ALP3E are broadband 6-bit GaAs IC digital attenuators in low cost leadless surface mount packages. Covering 2.2 GHz to 8.0 GHz, the insertion loss is less than 4.5 dB typical. The attenuator bit values are 0.5 (LSB), 1, 2, 4, 8, and 16 dB for a total attenuation of 31.5 dB. Attenuation accuracy is excellent at \pm 0.5 dB typical step error with an IIP3 of +40 dBm. Six control voltage inputs, toggled between 0 and +3 to +5V, are used to select each attenuation state. A single VDD bias of +3 to +5V is required.

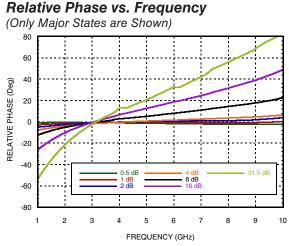

Electrical Specifications

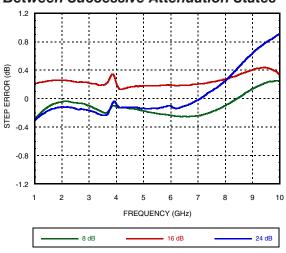

 $T_A = +25^{\circ}$ C, With VDD = +5V & VCTL= 0/+5V (Unless Otherwise Noted)

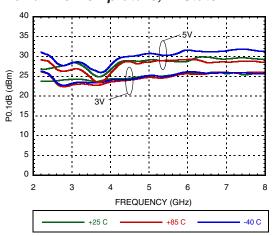

Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss		2.2 - 6.0 GHz 6.0 - 8.0 GHz		3.5 4.5	4 4.7	dB dB
Attenuation Range		2.2 - 8.0 GHz		31.5		dB
Return Loss (RF1 & RF2, All Atten. States)		2.2 - 8.0 GHz		15		dB
Attenuation Accuracy (Referenced to Insertion Loss)	All States	2.2 - 8.0 GHz	± (0.5 + 5% of Atten. Setting Max.)		dB	
Input Power for 0.1 dB Compression	VDD= 5V VDD = 3V	2.2 - 8.0 GHz		25 23		dBm dBm
Input Third Order Intercept Point (Two-Tone Input Power= 0 dBm Each Tone)	REF - 16.0 dB States 16.5 - 31.5 dB States	2.2 - 8.0 GHz		45 40		dBm dBm
Switching Characteristics						
$t_{\rm RISE}, t_{\rm FALL}$ (10/90% RF) $t_{\rm ON}, t_{\rm OFF}$ (50% CTL to 10/90% RF)		2.2 - 8.0 GHz		400 420		ns ns



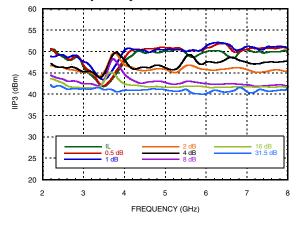

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 2.2 - 8.0 GHz

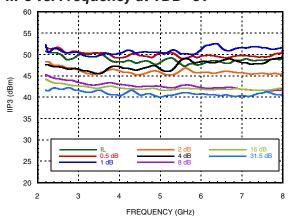





/01 0317

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 2.2 - 8.0 GHz


Worst Case Step Error Between Successive Attenuation States


P0.1dB vs. Temprature, IL State

IIP3 vs. Frequency at VDD=3V

IIP3 vs. Frequency at VDD=5V

Truth Table

	Control Voltage Input					Attenuation	
V1 16 dB	V2 8 dB	V3 4 dB	V4 2 dB	V5 1 dB	V6 0.5 dB	State RF1 - RF2	
High	High	High	High	High	High	Reference I.L.	
High	High	High	High	High	Low	0.5 dB	
High	High	High	High	Low	High	1 dB	
High	High	High	Low	High	High	2 dB	
High	High	Low	High	High	High	4 dB	
High	Low	High	High	High	High	8 dB	
Low	High	High	High	High	High	16 dB	
Low	Low	Low	Low	Low	Low	31.5 dB	

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

Bias Voltage & Current

VDD Range = +3.0 V to +5.0 V		
VDD (Vdc) IDD (Typ.)		
+3.0 V	10 μΑ	
+5.0 V 30 μA		

Control Voltage

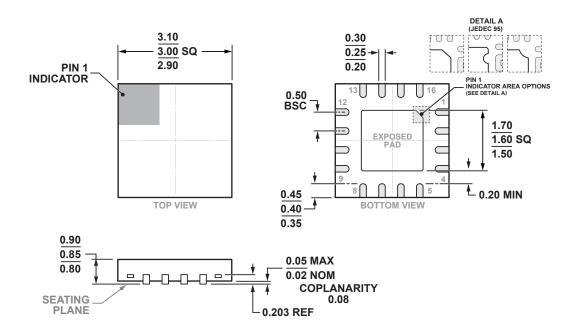
State	Bias Condition	
Low	0 to 0.2V at 10 μA Typ.	
High	VDD ± 0.2V at 5 μA Typ.	

Note: VDD = +3V to +5V

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 2.2 - 8.0 GHz

Absolute Maximum Ratings

Control Voltage (V1 to V6)	VDD +0.5 Vdc	
Supply Voltage (VDD)	+7.0 Vdc	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
RF Input Power (2.2 - 8.0 GHz)	+27 dBm	
ESD Sensitivity (HBM)	Class 1A	
ESD Sensitivity (FICDM)	Class IV	



Outline Drawing

ANALOG DEVICES

16-Lead Lead Frame Chip Scale Package [LFCSP 3 x 3 mm Body and 0.85 mm Package Height (CP-16-50)

Dimensions shown in millimeters

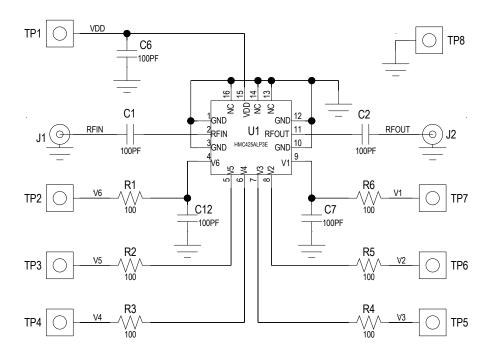
COMPLIANT TO JEDEC STANDARDS MO-220-VEED-4

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC425ALP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% Matte Sn	MSL3 [1]	H425A XXXX

^[1] Max peak reflow temperature of 260 °C

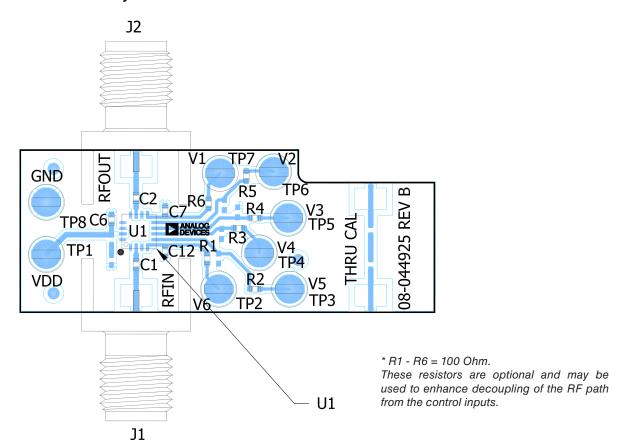
^{[2] 4-}Digit lot number XXXX



0.5 dB LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 2.2 - 8.0 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic	
1, 3, 10, 12	GND	Package bottom has an exposed metal paddle that must also be connected to RF ground.	·	
2, 11	RFIN, RFOUT	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required.		
4, 5, 6, 7, 8, 9			50000	
13, 14, 16	This pin should be connected to PCB RF ground to maximize performance.			
15	VDD	Supply Voltage		


Evaluation PCB Schematic

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 2.2 - 8.0 GHz

Evaluation PCB Layout

List of Materials for Evaluation PCB EV1HMC425ALP3E [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
TP1-TP8	DC Test Point
C1-C2, C6, C7, C12	100 pF Capacitor, 0402 Pkg.
R1 - R6	100 Ohm Resistor, 0402 Pkg.
U1	HMC425ALP3E Digital Attenuator
PCB [2]	08-044925 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363-EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT# MAX2692EVKIT# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB