Typical Applications

The HMC427ALP3E is ideal for:

- Test Instrumentation
- Fiber Optics \& Broadband Telecom
- Basestation Infrastructure
- Microwave Radio \& VSAT
- Military Radios, Radar, \& ECM

Functional Diagram

Features

High Isolation: $40 \sim 45 \mathrm{~dB}$ thru 6 GHz
Low Insertion Loss: 1.5 dB at 6 GHz
Non-Reflective Design
3x3mm SMT Package

General Description

The HMC427ALP3E is a low loss broadband positive control transfer switch in leadless surface mount package. Covering DC to 8 GHz , this switch offers high isolation and low insertion loss. The switch operates using a positive control voltage of $0 /+5 \mathrm{~V}$ and requires a fixed bias of +5 V at $<20 \mu \mathrm{~A}$.

[^0]Electrical Specifications, $T_{A}=+25^{\circ} \mathrm{C}$, VDD $=5 \mathrm{~V}$, With 0/+5V Control, 50 Ohm System

Parameter	Frequency	Min.	Typ.	Max.	Units
Insertion Loss	$\begin{aligned} & \mathrm{DC}-6.0 \mathrm{GHz} \\ & \mathrm{DC}-8.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 1.8 \end{aligned}$	$\begin{gathered} 2 \\ 2.1 \end{gathered}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Isolation	$\begin{aligned} & \mathrm{DC}-1.0 \mathrm{GHz} \\ & \mathrm{DC}-2.0 \mathrm{GHz} \\ & \mathrm{DC}-6.0 \mathrm{GHz} \\ & \mathrm{DC}-8.0 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \\ & 36 \\ & 35 \end{aligned}$	$\begin{aligned} & 50 \\ & 45 \\ & 43 \\ & 43 \end{aligned}$		dB dB dB dB
Return Loss	$\begin{aligned} & \mathrm{DC}-6.0 \mathrm{GHz} \\ & \mathrm{DC}-8.0 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 18 \\ & 18 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Input Power for 1 dB Compression	$1.0-8.0 \mathrm{GHz}$	25	26		dBm dBm
Input Third Order Intercept (Two-Tone Input Power $=+12 \mathrm{dBm}$ Each Tone, 1 MHz Tone Separation)	$1.0-8.0 \mathrm{GHz}$	40	43		dBm dBm
Switching Characteristics tRISE, tFALL (10/90\% RF) tON, tOFF (50% CTL to $10 / 90 \%$ RF)	DC - 8.0 GHz		$\begin{gathered} 2 \\ 10 \end{gathered}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$

Insertion Loss vs. Temperature

Return Loss

Isolation

0.1 and 1 dB Input Compression Point

Input Third Order Intercept Point

Absolute Maximum Ratings

Bias Voltage Range (VDD)	+7.0 VDC
 CTRLB)	-0.5 V to VDD +1.0 VDC
Channel Temperature	$150^{\circ} \mathrm{C}$
Thermal Resistance	$130^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150^{\circ} \mathrm{C}$
Operating Temperature	-40 to $+85^{\circ} \mathrm{C}$
Maximum Input Power	$+25.5 \mathrm{dBm}(\mathrm{DC}-2 \mathrm{GHz})$
	$+27 \mathrm{dBm}(2 \mathrm{GHz}-8 \mathrm{GHz})$
	Class 1 A
ESD Sensitivity (FICDM)	Class IV

Note:
DC blocking capacitors are required at ports RF1, 2, 3, \& 4. Their value will determine the lowest transmission frequency.

Bias Voltage \& Current

VDD Range $=+5$ VDC $\pm 10 \%$		
VDD $(V D C)$	IDD (Typ.) $(\mu \mathrm{A})$	IDD (Max.) $(\mu \mathrm{A})$
+5	5	10

Control Voltages

State	Bias Condition
Low	0 to +0.2 VDC at $<1 \mu \mathrm{~A}$ Typical
High	Vdd ± 0.2 VDC at $<1 \mu \mathrm{~A}$ Typical

Truth Table

Control Input		Signal Path State			
A	B	RF4 to RF2	RF1 to RF3	RF4 to RF1	RF2 to RF3
Low	High	On	On	Off	Off
High	Low	Off	Off	On	On

Outline Drawing

FOR PROPER CONNECTION OF THE EXPOSED PAD, REFER TO THE PIN CONFIGURATION AND FUNCTION DESCRIPTIONS
SECTION OF THIS DATA SHEET.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{[2]}$
HMC427ALP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 $^{[1]}$	$\frac{\mathrm{H} 427 \mathrm{~A}}{\mathrm{XXXX}}$

[^1]
Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 9, 12	RF4, RF1, RF3, RF2	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required.	
$\begin{gathered} 2,3,5,8 \\ 10,11,13 \\ 14,16 \end{gathered}$	NC	This pin should be connected to PCB RF ground to maximize isolation.	
	GND	Package bottom has exposed metal paddle that must be connected to PCB RF ground.	$\frac{\text { OGND }}{=}$
6	CTRLA	See truth table and control voltage table.	
7	CTRLB	See truth table and control voltage table.	
15	VDD	Supply Voltage $+5 \mathrm{~V} \pm 10 \%$.	

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC427ALP3E ${ }^{[1]}$

Item	Description
J1 - J4	PCB Mount SMA RF Connector
J5 - J8	DC Pin
C1	1000 pF Capacitor, 0603 Pkg.
C2 - C5	100 pF Capacitor, 0402 Pkg.
R1 - R2	100 Ohm Resistor, 0603 Pkg.
U1	HMC427ALP3E Transfer Switch
PCB [2]	Evaluation PCB 01-044016A

[1] Reference this number when ordering complete evaluation PCB
[2] Circuit Board Material: Rogers 4350

The circuit board used in the final application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Analog Devices upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:

Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB MASW-000936-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# EV1HMC629ALP4E SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 119197HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB

[^0]: * Blocking capacitors are required at ports RF1, 2, 3, \& 4. Their value will determine the lowest transmission frequency.

[^1]: [1] Max peak reflow temperature of $260^{\circ} \mathrm{C}$
 [2] 4-Digit lot number XXXX

