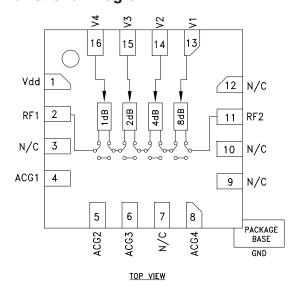


HMC540SLP3E

00 0015


1 dB LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 0.1 - 8 GHz

Typical Applications

The HMC540SLP3E is ideal for both RF and IF applications:

- Cellular Infrastructure
- Wireless Infrastructure
- Microwave Radio & VSAT
- Test Equipment and Sensors

Functional Diagram

Features

1 dB LSB Steps to 15 dB ± 0.2 dB Typical Step Error Low Insertion Loss: =< 1 dB

High IP3: +56 dBm

Single Control Line Per Bit

TTL/CMOS Compatible Control

Single +3.3/+5V Supply

3x3 mm SMT Package

ESD rating: Class 2 (2kV HBM)

Drop-in Replacement for HMC540LP3E

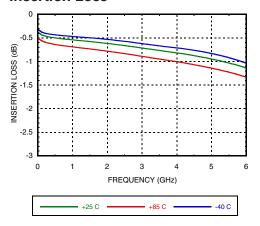
General Description

The HMC540SLP3E is a broadband 4-bit Silicon IC digital attenuator in a low cost leadless surface mount package. This single positive control line per bit digital attenuator utilizes off chip AC ground capacitors for near DC operation, making it suitable for a wide variety of RF and IF applications. Covering 0.1 to 8 GHz, the insertion loss is less than 1 dB typical. The attenuator bit values are 1 (LSB), 2, 4 and 8 dB for a total attenuation of 15 dB. Attenuation accuracy is excellent at \pm 0.2 dB typical step error. The attenuator also features a IIP3 of +56dBm. Four TTL/CMOS control inputs are used to select each attenuation state. It can operate with a single Vdd ranging from +3.3V to 5V.

Electrical Specifications,

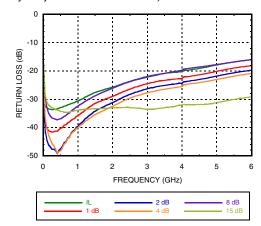
 $T_A = +25^{\circ}$ C, With Vdd = +5V & VctI = 0/+5V (Unless Otherwise Noted)

Parameter		Frequency (GHz)	Min.	Тур.	Max.	Units
Insertion Loss		0.1 - 2.0 GHz 2.0 - 3.0 GHz 3.0 - 4.0 GHz 4.0 -5.5 GHz 5.5 - 8.0 GHz		0.7 0.8 0.8 1.0 1.7	1.1 1.3 1.6 2.6 3.0	dB dB dB dB
Attenuation Range		0.1 - 8 GHz		15		dB
Return Loss (RF1 & RF2, All Atten. States)		0.1 - 3.5 GHz 3.5 - 5.5 GHz 5.5 - 8 GHz		22 17 12		dB dB dB
Attenuation Accuracy: (Referenced to Insertion Loss) All States		0.1 - 1.0 GHz 1.0 - 4.0 GHz 4.0 - 5.0 GHz 5.0 - 5.5 GHz 5.5 GHz - 8 GHz	± (0.2 + 3% ± (0.3 + 5% ± (0.4 + 8%	of Atten. Sett of Atten. Sett of Atten. Sett of Atten. Sett of Atten. Sett	ing) Max. ing) Max. ing) Max.	dB dB dB dB

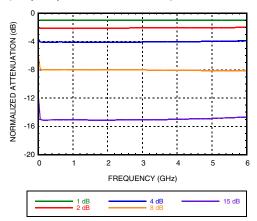

00 0015

1 dB LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 0.1 - 8 GHz

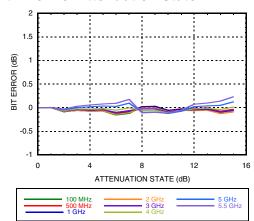
Parameter		Frequency (GHz)	Min.	Тур.	Max.	Units
Input Power for 0.1 dB Compression		0.1 - 8 GHz		31		dBm
Input Third Order Intercept Point (Two-Tone Input Power= 12 dBm Each Tone)	REF - 4 dB States 5 - 15 dB States	0.1 - 8 GHz		57 55		dBm
Switching Characteristics		DC -8 GHz				
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)		DC -8 GH2		45 129		ns ns


Frequency Response Plots up to 6 GHz

Insertion Loss


Return Loss RF1, RF2

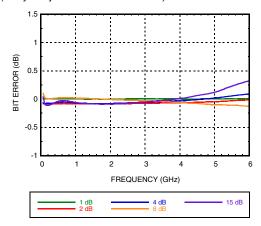
(Only Major States are Shown)



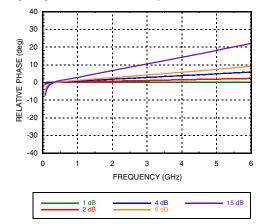
Normalized Attenuation

(Only Major States are Shown)

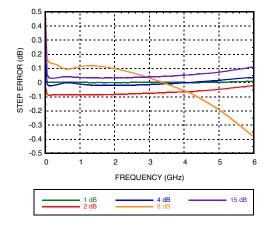
Bit Error vs. Attenuation State



1 dB LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 0.1 - 8 GHz


Bit Error vs. Frequency

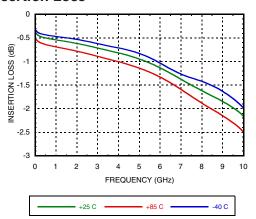
(Only Major States are Shown)



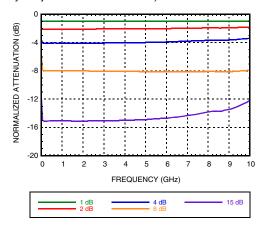
Relative Phase vs. Frequency

(Only Major States are Shown)

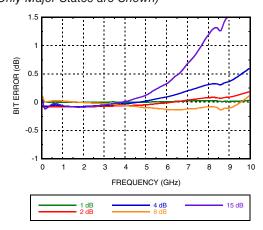
Step Error vs Frequency (Major States)



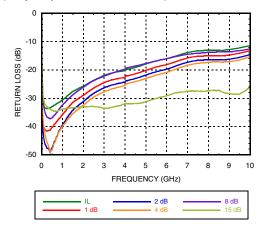
v00 0915


1 dB LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 0.1 - 8 GHz

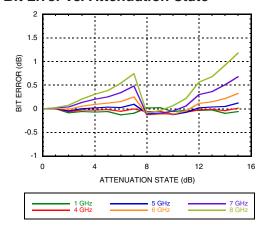
Frequency Response Plots up to 10 GHz Insertion Loss


Normalized Attenuation

(Only Major States are Shown)

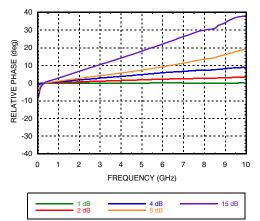

Bit Error vs. Frequency

(Only Major States are Shown)



Return Loss RF1, RF2

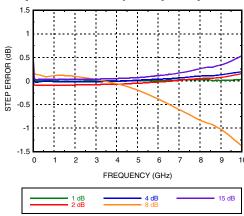
(Only Major States are Shown)



Bit Error vs. Attenuation State

Relative Phase vs. Frequency

(Only Major States are Shown)

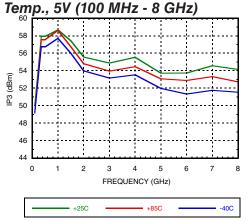


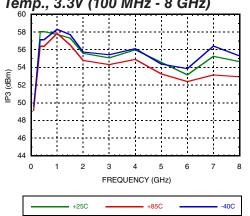
HMC540SLP3E

20.0015

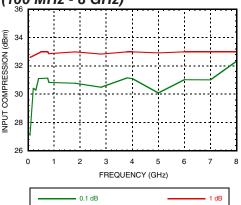
1 dB LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 0.1 - 8 GHz

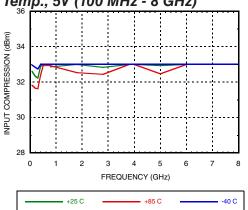
Step Error vs Frequency (Major States)

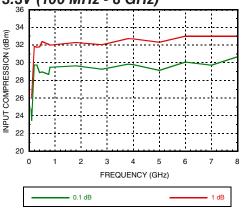


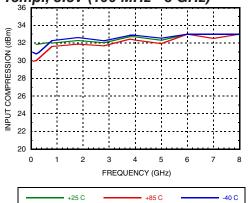

00.0915

1 dB LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 0.1 - 8 GHz


Power Handling up to 8 GHz Input Third Order Intercept Point over


Input Third Order Intercept Point over Temp., 3.3V (100 MHz - 8 GHz)


0.1 and 1 dB Input Compression Point, 5V (100 MHz - 8 GHz)


1 dB Input Compression Point, Over Temp., 5V (100 MHz - 8 GHz)

0.1 and 1 dB Input Compression Point, 3.3V (100 MHz - 8 GHz)

1 dB Input Compression Point, Over Temp., 3.3V (100 MHz - 8 GHz)

00.0915

1 dB LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 0.1 - 8 GHz

Absolute Maximum Ratings

+27 dBm
+25 dBm
-0.3V to 5.4V
-0.3V to Vdd +.5V
140 °C
110 °C/W
Class 2
-65 to +150 °C

Recommended Operation Ratings

RF Input Power at 85 °C	+24 dBm
RF Input Power at 105 °C	+23 dBm
Bias Voltage (Vdd)	3V to 5.4V
Control Voltage Range (V1 to V4)	0 to Vdd
Operating Temperature	-40 to +105 °C

Bias Voltage & Current

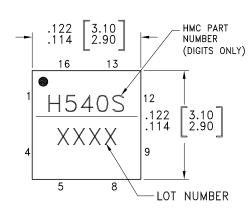
Vdd (V)	ldd (Typ.) (mA)
+3.3	0.14
+5.0	0.17

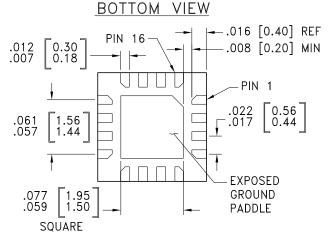
Control Voltage

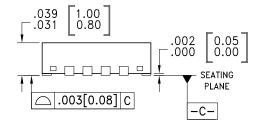
State	Vdd = +3.3V	Vdd = +5V
Low	0 to 0.5V @ < 1 uA	0 to +0.8V @ < 1 uA
High	2 to 3.3V @ 25 uA	2 to 5V @ 35 uA

Truth Table

	Attenuation			
V1 8 dB	V2 4 dB	V3 2 dB		
High	High	High	High	Reference I.L.
High	High	High	Low	1 dB
High	High	Low	High	2 dB
High	Low	High	High	4 dB
Low	High	High	High	8 dB
Low	Low	Low	Low	15 dB


Any combination of the above states will provide an attenuation approximately equal to $\,$ the sum of the bits selected.




V00 0015

1 dB LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 0.1 - 8 GHz

Outline Drawing

NOTES:

- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

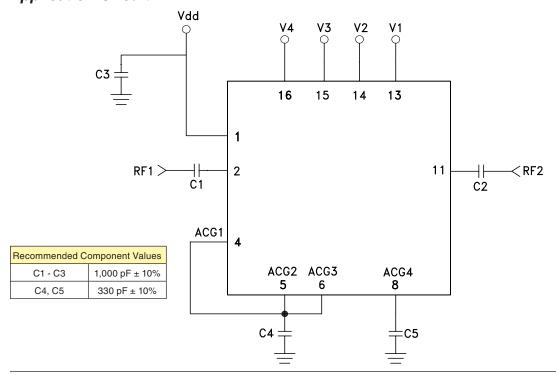
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC540SLP3E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL3 [2]	H540S XXXX

^[1] Max peak reflow temperature of 235 $^{\circ}\text{C}$

^[2] Max peak reflow temperature of 260 °C

^{[3] 4-}Digit lot number XXXX

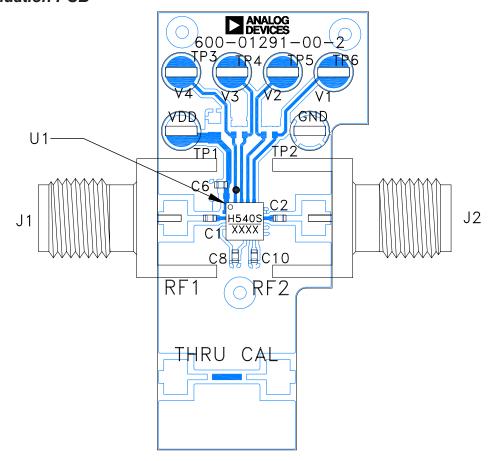

00.0915

1 dB LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 0.1 - 8 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1	Vdd	Supply Voltage.	
2, 11	RF1, RF2	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required. Select value based on lowest frequency of operation.	RF1 ESD
3, 7, 9, 10, 12	N/C	These pins should be connected to PCB RF ground to maximize performance.	
4 - 6, 8	ACG1 - ACG4	External capacitor to ground is required. Select value for lowest frequency of operation. Place capacitor as close to pins as possible.	
13 - 16	V1 - V4	See truth table and control voltage table.	(V1 <u>/Vs</u>) 500 142K
	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC Ground.	GND

Application Circuit



00 0015

1 dB LSB SILICON MMIC 4-BIT DIGITAL POSITIVE CONTROL ATTENUATOR, 0.1 - 8 GHz

Evaluation PCB

List of Materials for Evaluation PCB EV1HMC540SLP3[1]

Item	Description
J1, J2	PCB Mount SMA Connector
TP1 - TP6	Thru Hole Mount Test Point
C1, C2, C6	1000 pF Capacitor, 0402 Pkg.
C8, C10	330 pF Capacitor, 0402 Pkg.
U1	HMC540SLP3E Digital Attenuator
PCB [2]	600-01291-00 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Analog Devices upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4
EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT#
MAX2692EVKIT# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2
EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4
MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1
SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB