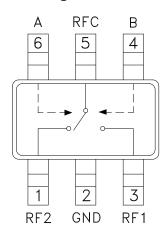


HMC595A / 595AE

01.0515


GaAs MMIC 3 WATT T/R SWITCH DC - 3 GHz

Typical Applications

The HMC595A / 595AE is ideal for:

- Cellular/3G Infrastructure
- Private Mobile Radio Handsets
- WLAN, WiMAX & WiBro
- Automotive Telematics
- Test Equipment

Functional Diagram

Features

Low Insertion Loss: 0.3 dB High Input IP3: +63 dBm

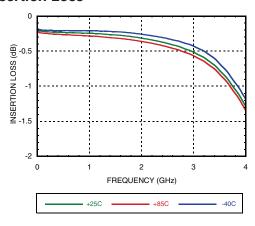
Isolation: 30 dB

Positive Control: 0/+3V to 0/+10V Ultra Small Package: SOT26

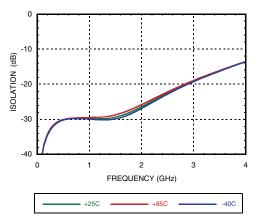
General Description

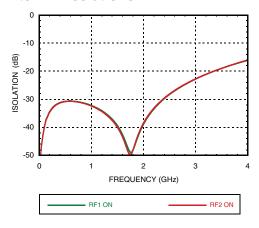
The HMC595A & HMC595AE are low-cost SPDT switches in 6-lead SOT26 packages for use in transmit/receive applications which require very low distortion at high incident power levels. The device can control signals from DC to 3 GHz and is especially suited for Cellular/3G infrastructure, WiMAX and WiBro applications with only 0.3 dB typical insertion loss. The design provides a 3 watt power handling and +63 dBm third order intercept at +8 Volt bias. RF1 and RF2 are reflective shorts when "Off". Control inputs A & B are compatible with CMOS and some TTL logic families. These products are form, fit and function replacements for HMC595 & HMC595E while offering superior electrical performance.

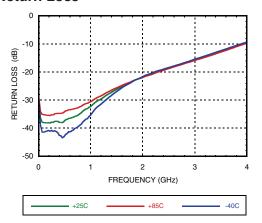
Electrical Specifications,

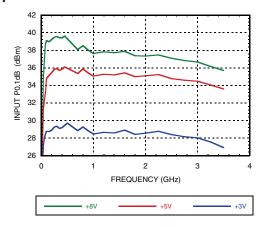

 $T_A = +25^{\circ}$ C, Vctl = 0/+5 Vdc (Unless Otherwise Stated), 50 Ohm System

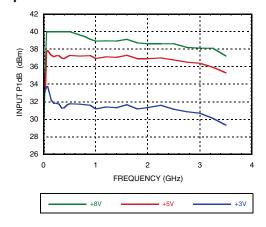
Parameter		Frequency	Min.	Тур.	Max.	Units
Insertion Loss		DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz		0.25 0.3 0.4 0.5	0.5 0.6 0.7 0.8	dB dB dB dB
Isolation		DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz	26 22 18 14	30 26 24 18		dB dB dB dB
Return Loss		DC - 1.0 GHz DC - 2.0 GHz DC - 2.5 GHz DC - 3.0 GHz		30 25 22 20		dB dB dB dB
Input Power for 1dB Compression	Vctl = 0/+3V Vctl = 0/+5V Vctl = 0/+8V	0.5 - 3.0 GHz	29 35 37	31 37 39		dBm dBm dBm
Input Third Order Intercept (Two-tone Input Power = +23 dBm Each Tone)	VctI = 0/+3V $VctI = 0/+5V$ $VctI = 0/+8V$	0.5 - 3.0 GHz		50 64 63		dBm dBm dBm
Switching Characteristics		DC - 3.0 GHz				
tRISE, tFALL (10/90% RF) tON, tOFF (50% CTL to 10/90% RF)				50 100		ns ns



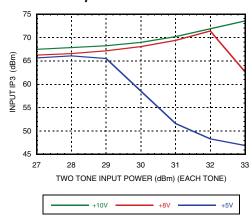

Insertion Loss

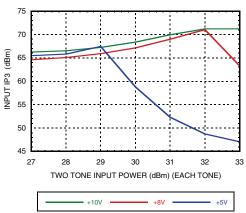

Isolation Between RFC and RF1/RF2

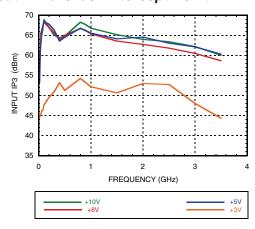

RF1 to RF2 Isolations

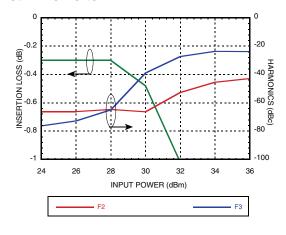

Return Loss

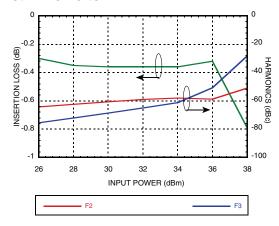
Input P0.1dB vs. Vctl

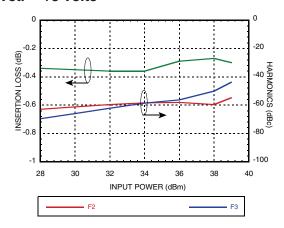

Input P1dB vs. Vctl



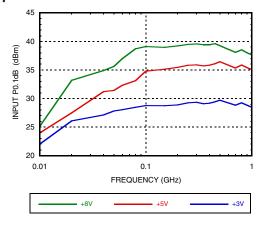

Input IP3 vs. Input Power @ 900 MHz


Input IP3 vs. Input Power @ 1900 MHz

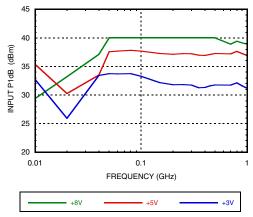

Input Third Order Intercept Point


2nd & 3rd Harmonics @ 900 MHz VctI = +3 VoIts

2nd & 3rd Harmonics @ 900 MHz VctI = +5 Volts


2nd & 3rd Harmonics @ 900 MHz VctI = +8 VoIts

Input P0.1dB vs. Vctl



Absolute Maximum Ratings

Max. Input Power $V_{ctl} = 0/+8V$	0.5 - 2.5 GHz	39 dBm	
Control Voltage Range (A & B)		-0.2 to +12 Vdc	
Channel Temperature		150 °C	
Continuous Pdiss (T= +85 °C) (derate 9.2 mW/°C above 85 °C)		0.597W	
Thermal Resistance		109 °C/W	
Storage Temperature		-65 to +150 °C	
Operating Temperature		-40 to +85 °C	
ESD Sensitivity (HBM)		Class 1A	

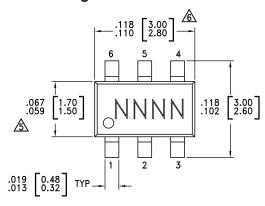
DC Blocks are required at ports RFC, RF1 and RF2

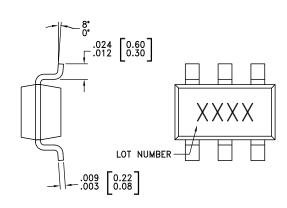
Input P1dB vs. Vctl

Control Voltages

State	Bias Condition
Low	0 to +0.2 Vdc @ 10 μA Typical
High	+3 Vdc @ 2μA Typical to +8 Vdc @ 100 μA Typical (± 0.2 Vdc)

Truth Table


Control Input (Vctl)		Signal Path State		
Α	В	RFC to RF1	RFC to RF2	
High	Low	Off	On	
Low	High	On	Off	



Outline Drawing

.051 [1.30 .035 [0.90] .057 [1.45] MĀX .0374 [0.95] TYP $.006 \ \begin{bmatrix} 0.15 \\ 0.00 \end{bmatrix}$

NOTES:

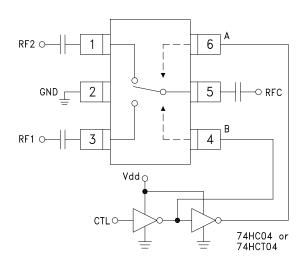
- 1. LEADFRAME MATERIAL: COPPER ALLOY
- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- ⚠ DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.15mm PER SIDE. A DIMENSION DOES NOT INCLUDE MOLDFLASH OF 0.25mm PER SIDE.
- 5. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND

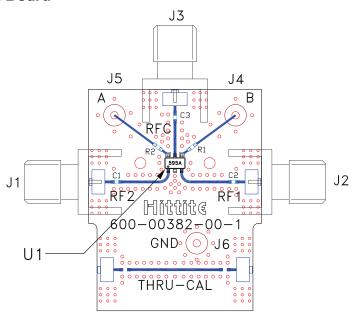
Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [3]
HMC595A	Low Stress Injection Molded Plastic	Sn/Pb Solder	MSL1 [1]	H595A XXXX
HMC595AE	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [2]	595AE XXXX

- [1] Max peak reflow temperature of 235 °C
- [2] Max peak reflow temperature of 260 °C
- [3] 4-Digit lot number XXXX

Pin Descriptions


Pin Number	Function	Description	Interface Schematic
1, 3, 5	RF2, RF1, RFC	This pin is DC coupled and matched to 50 Ohm. Blocking capacitors are required.	
2	GND	This pin must be connected to RF/DC ground.	GND =
4	В	See truth table and control voltage table.	R
6	А	See truth table and control voltage table.	± c ±



Typical Application Circuit

- 1. Set logic gate and switch Vdd = +3V to +5V and use HCT series logic to provide a TTL driver interface.
- 2. Control inputs A/B can be driven directly with CMOS logic (HC) with Vdd of +3 to +8 Volts applied to the CMOS logic gates.
- 3. DC Blocking capacitors are required for each RF port as shown. Capacitor value determines lowest frequency of operation.
- 4. Highest RF signal power capability is achieved with V set to +10V. The switch will operate properly (but at lower RF power capability) at bias voltages down to +3V.

Evaluation Circuit Board

List of Materials for Evaluation PCB EV1HMC595A [1]

Item	Description
J1 - J3	PCB Mount SMA RF Connector
J4 - J6	DC Pin
C1 - C3	330 pF capacitor, 0402 Pkg.
R1, R2	1 kOhm Resistor, 0402 Pkg.
U1	HMC595A / 595AE T/R Switch
PCB [2]	101659 Evaluation PCB

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should be generated with proper RF circuit design techniques. Signal lines at the RF port should have 50 Ohm impedance and the package ground leads and package bottom should be connected directly to the ground plane similar to that shown above. The evaluation circuit board shown above is available from Analog Devices upon request.

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for RF Development Tools category:

Click to view products by Analog Devices manufacturer:

Other Similar products are found below:

MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB
MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4
EV1HMC244AG16 MAX2614EVKIT# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT#
MAX2692EVKIT# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2
EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4
MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1
SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB