GaAs MMIC 5-BIT DIGITAL PHASE SHIFTER, 15 - 18.5 GHz

Typical Applications

The HMC644ALC5 is ideal for:

- EW Receivers
- Weather \& Military Radar
- Satellite Communications
- Beamforming Modules
- Phase Cancellation

Functional Diagram

Features

Low RMS Phase Error: 3.5°
Low Insertion Loss: 7.5 dB
High Linearity: +40 dBm
360° Coverage, LSB $=11.25^{\circ}$
32 Lead Ceramic SMT Package: $25 \mathrm{~mm}^{2}$

General Description

The HMC644ALC5 is a 5 -bit digital phase shifter which is rated from 15 to 18.5 GHz , providing 360 degrees of phase coverage, with a LSB of 11.25 degrees. The HMC644ALC5 features very low RMS phase error of 3.5 degrees and extremely low insertion loss variation of $\pm 0.5 \mathrm{~dB}$ across all phase states. This high accuracy phase shifter is controlled with complementary logic of 0/-3V, and requires no fixed bias voltage. The HMC644ALC5 is housed in a compact $5 \times 5 \mathrm{~mm}$ ceramic leadless SMT package and is internally matched to 50 Ohms with no external components. Simple external level shifting circuitry can be used to convert a positive CMOS control voltage into complementary negative control signals.

Electrical Specifications, $T_{A}=+25^{\circ}$ C, 50 Ohm System, Control Voltage $=\mathbf{0} / \mathbf{- 3 V}$

Parameter	Min.	Typ.	Max.	Units
Frequency Range	15		18.5	GHz
Insertion Loss		7.5	10	dB
Input Return Loss		10		dB
Output Return Loss		12		dB
Phase Error		± 5	+20/-10	deg
RMS Phase Error		3.5		deg
Insertion Loss Variation		± 0.5		dB
Input Power for 1 dB Compression		23		dBm
Input Third Order Intercept		40		dBm
Control Voltage Current		<1		mA

Insertion Loss, Major States Only

Input Return Loss, Major States Only

Output Return Loss, Major States Only

Normalized Loss, Major States Only

Phase Error, Major States Only

Relative Phase Shift Major States Including All Bits

Relative Phase Shift, RMS, Average, Max, All States

Input IP2, Major States Only

RMS Phase Error vs. Temperature

Input IP3, Major States Only

Input P1dB, Major States Only

Insertion Loss +25C, Major States Only

Insertion Loss +85C, Major States Only

Phase Error vs. State, Major States Only

Insertion Loss -40C, Major States Only

Absolute Maximum Ratings

Input Power (RFIN)	$\mathbf{2 6 ~ d B m ~ (T = + 8 5}{ }^{\circ} \mathrm{C}$)
Channel Temperature (TC)	$150{ }^{\circ} \mathrm{C}$
Thermal Resistance (channel to ground paddle)	$150{ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature	-65 to $+150{ }^{\circ} \mathrm{C}$
Operating Temperature	$-\mathbf{4 0}$ to $+85{ }^{\circ} \mathrm{C}$
ESD sensitivity(HBM)	Class $\mathbf{0}$ Passed 100 V

Control Voltage

State	Bias Condition
Low (0)	-2.5 to $-3.5 \mathrm{~V} @ 0.4 \mu \mathrm{~A}$ Typ.
High (1)	0 to $+0.3 \mathrm{~V} @ 0.4 \mu \mathrm{~A}$ Typ.

ELECTROSTATIC SENSITIVE DEVICE OBSERVE HANDLING PRECAUTIONS

Truth Table

Control Voltage Input									Phase Shift (Degrees) RFIN RFOUT
Bit 1	Bit 2	$\overline{\text { Bit } 2}$	Bit 3	$\overline{\text { Bit } 3}$	Bit 4	$\overline{\text { Bit } 4}$	Bit 5	$\overline{\text { Bit } 5}$	
0	0	1	0	1	0	1	0	1	Reference*
1	0	1	0	1	0	1	0	1	11.25
0	1	0	0	1	0	1	0	1	22.5
0	0	1	1	0	0	1	0	1	45.0
0	0	1	0	1	1	0	0	1	90.0
0	0	1	0	1	0	1	1	0	180.0
1	1	0	1	0	1	0	1	0	348.75

Any combination of the above states will provide a phase shift approximately equal to the sum of the bits selected.
*Reference corresponds to monotonic setting

Outline Drawing

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ${ }^{\text {［2］}}$
HMC644ALC5	Alumina，White	Gold over Nickel	MSL3 ${ }^{[1]}$	H644A XXXX

［1］Max peak reflow temperature of $260{ }^{\circ} \mathrm{C}$
［2］4－Digit lot number XXXX

GaAs MMIC 5－BIT DIGITAL PHASE SHIFTER， 15 －18．5 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
$\begin{gathered} 1-4,13 \\ 21-32 \end{gathered}$	N／C	No connection required．These pins may be connected to RF／DC ground without affecting performance．	
5，7，18， 20	GND	These pins and exposed ground paddle must be connected to RF／DC ground．	$\begin{aligned} & \text { OGND } \\ & = \end{aligned}$
6	RFIN	This port is DC coupled and matched to 50 Ohms．	RFIN ${ }^{-}$
$\begin{gathered} 8,10,12, \\ 14,17 \end{gathered}$	BIT4，BIT2，BIT1， BIT3，BIT5	Non－Inverted Control Input．See truth table and control voltage tables．	
$\begin{aligned} & 9,11, \\ & 15,16 \end{aligned}$	$\frac{\overline{\mathrm{BIT} 4}, \overline{\mathrm{BIT} 2}}{\overline{\mathrm{BIT} 3}, \overline{\mathrm{BIT}}}$	Inverted Control Input．See truth table and control voltage tables．	
19	RFOUT	This port is DC coupled and matched to 50 Ohms．	－ORFOUT

Application Circuit

This circuit converts a single line positive ($0 /+5 \mathrm{~V}$) control signal to complementary negative ($0 /-3 \mathrm{~V}$) control signals.

Evaluation PCB

List of Materials for Evaluation PCB $116685{ }^{[1][3]}$

Item	Description
J1－J2	PCB Mount SMA RF Connector
J3	Molex Header 2mm
U1	HMC644ALC5 5－Bit Digital Phase Shifter
PCB［2］	116683 Evaluation PCB

［1］Reference this number when ordering complete evaluation PCB
［2］Circuit Board Material：Rogers 4350
［3］Please refer to part＇s pin description and func－ tional diagram for
pin out assignments on evaluation board．

The circuit board used in the final application should use RF circuit design techniques．Signal lines should have 50 ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown．A sufficient number of via holes should be used to connect the top and bottom ground planes．The evaluation board should be mounted to an appropriate heat sink．The evaluation circuit board shown is available from Hittite upon request．

X-ON Electronics

Largest Supplier of Electrical and Electronic Components
Click to view similar products for RF Development Tools category:
Click to view products by Analog Devices manufacturer:
Other Similar products are found below :
MAAM-011117 MAAP-015036-DIEEV2 EV1HMC1113LP5 EV1HMC6146BLC5A EV1HMC637ALP5 EVAL-ADG919EBZ ADL5363EVALZ LMV228SDEVAL SKYA21001-EVB SMP1331-085-EVB EV1HMC618ALP3 EVAL01-HMC1041LC4 MAAL-011111-000SMB MAAM-009633-001SMB 107712-HMC369LP3 107780-HMC322ALP4 SP000416870 EV1HMC470ALP3 EV1HMC520ALC4 EV1HMC244AG16 MAX2614EVKIT\# 124694-HMC742ALP5 SC20ASATEA-8GB-STD MAX2837EVKIT+ MAX2612EVKIT\# MAX2692EVKIT\# SKY12343-364LF-EVB 108703-HMC452QS16G EV1HMC863ALC4 EV1HMC427ALP3E 119197-HMC658LP2 EV1HMC647ALP6 ADL5725-EVALZ 106815-HMC441LM1 EV1HMC1018ALP4 UXN14M9PE MAX2016EVKIT EV1HMC939ALP4 MAX2410EVKIT MAX2204EVKIT+ EV1HMC8073LP3D SIMSA868-DKL SIMSA868C-DKL SKY65806-636EK1 SKY68020-11EK1 SKY67159-396EK1 SKY66181-11-EK1 SKY65804-696EK1 SKY13396-397LF-EVB SKY13380-350LF-EVB

